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ABSTRACT 

This note encompasses a set of six lectures given at the summer school 
held at Campos Do Jordao on January of 1989 near Sao Paula, Brazil. 
The intent of the lectures was to describe the physics of pp at CERN 
and Fermilab. Particular attention has been paid to making a self con- 
tained presentation to a prospective audience of graduate students. 
Since large Monte Carlo codes might not be available to all members 
of this audience, great reliance was placed on “back of the envelope esti- 
mates.” Emphasis was also placed on experimental data rather than 
theoretical speculation, since predictions for, for example, supersym 
-metric particle production are easily obtained by transcription of 
formulae already obtained. 

A. POINT PARTICLE CONSTITUENTS AND THEIR COUPLINGS 

In the field of elementary particle physics we have come to a synthesis in our 

understanding which goes under the name of the Standard Model. Matter con- 

sists of a number of pointlike spin one half fermions which come in two categories, 

quarks and leptons. Within these two categories quark and lepton doublet pairs 

are replicated in at least three generations. Energy, or the forces between matter, 

is communicated by a series of spin one gauge bosons. There are eight gluons corn- 

municating the strong force, the photon communicating the electromagnetic force, 

and the three charged and neutral gauge bosons, the W and 2 communicating 

‘Operated by Universities Research Association Inc. under contract with the United States 
Department of Energy 
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the weak force. The coupling constants describing the strength of these forces are 

all dimensionless. A schematic representation of the Standard Model is shown in 

Fig. A.l. 
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Figure A.l: Standard Model for matter and energy. Constituents are doublets of 
quarks and leptons in three generations. Forces are transmitted by gauge bosons 

with dimensionless couplings. 

In order to understand forces in the Standard Model, we’ll start with the elec- 

tromagnetic force which has the familiar form of minimal coupling. One starts 

with the kinetic term in the LaGrangian density for free particles and replaces the 

derivative by the covariant derivative. This derivative contains the interactive field 

which means that the replacement generates the interaction terms. They appear 

in the form of a current dotted with the interacting electromagnetic field. 
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L = 4(S - m)rl, 

~3 + D=a-zeA 

131 = -4&,4)A” 

zz -zeJ,A 

(A-1) 

Extending the scheme to the strong interactions, one replaces the U( 1) group of 

the electric charge to the SU(3) group of color. Remember that color is effectively 

the charge of the strong interaction. This replacement leads to an octet of colored 

gluons, interacting with a color triplet of quarks. The glum fields are represented 

by bc. 

U(1) 4 SU(3) 

--2e + g&b 

3@3 = 1@8 

a,b= 1,2,3 c= l,.......) 8 (A.21 

R, B, G Ri?, RC, Bfi, BE, Gfl, GB, 

(Rfi + BB - 2Gc)/di, (Rii + BB)/d 

D = a-(g,P)&,b. 

In the case of the electromagnetic and weak interactions, the U(1) group is re- 

placed by an SU(2) @ U(1) group. The weak doublets which we showed in Fig. A.1 

interact with a triplet and singlet of gauge bosom giving rise to the electromag- 

netic and weak interactions. The covariant derivative introducing the W and B 

fields is given below: 

U(l) --t SU(2) @ U(1) 

Qw = (1s +Y/~)w 

= + sQw 

2@2 = 1@3 (A.3) 

B’, U(l), 91 

w+,w”,w-, SW), ga 
D = 8 - z[gl(Y/2)B + gaf. ti] 
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There are two coupling constants, one associated with the SU(2) group, that 

is gz, and the other with the U(1) group gl. Ultimately we want to connect them 

with the physical couplings, the electromagnetic charge e, and the Fermi constant 

G. In order to do that we define physical states A and Z as arbitrary unitary 

rotations of the W and B neutral components. Then we identify the coupling of 

the A to be electric charge. 

a)( ;) = (-z;:;; zz;) ($I) 

D = 8-t 
[ 

(glY/2cos 0~ +gJssinBr~)A+g~(I+W- + I-W+) 
+(g.& cos tJw - glY/2 sin Bw)Z 1 

b) g1( Q - IS) cos Bw + g&sin BW = Qe 

g,c0sBw=g2sinBw=.6 

(A.4) 

This identification immediately shows the unification of electromagnetism and 

weak interactions in that the couplings g1 and ga are both equal to the electromag- 

netic coupling e up to trigonometric functions. Hence, the minimal gauge coupling 

scheme again specifies the interactions between the fermions and gauge bosons. 

In particular, we find that g1 specifies the charge changing weak currents and so 

we expect to identify ga with the Fermi constant. There is a more complicated 

connection between what is new in this theory, the prediction of the weak-neutral 

currents and the coupling constants g1 and gl. 

D = 8-z eQA+ g$+W- + I-W+)+ 
(-gl(Q - h)sin@w + g&cosOw)Z I 

-g,Q sin 9~ + g113 sin Bw + g113 cos Ow 

= J-[-Q sin’ BW + I3 sin’ flw + I3 ~0s’ 19w 1 (A.5) 

= J=[L - Qsin'tJw] 

D = ~3 -z 1 eQA+ gl(l+W- + I-W+) + Jx(13 - Qsin* 0w)Z 1 
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We now have derived the covariant derivative which specifies the interaction in 

terms of the physical particles of the theory, the photon, the charged-weak bosons, 

and the neutral-weak boson. The interactions that are specified by the gauge 

couplings of the fermions to the gauge bosons for the three forces; electromagnetic, 

strong, and weak are shown in Fig. A.2 with ga z gw. Left-handed weak-charged 

currents are explicitly assumed in Fig. A.2. 
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Figure A.2: Coupling of fermions to gauge bosons for the three forces; electro- 
magnetic, strong, and weak. 

So far we have specified the couplings of the bosons to the fermions. However, 

in the electroweak case, there is no particular reason why the weak eigenstates 
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should be equal to the strong eigenstates. Therefore, even assuming a universal 

electroweak-lepton coupling, there can be mixing in the quark sector. The coupling 

scheme for the favored quark couplings along with the relevant color factors is 

shown schematically for both II’ and Z gauge bosons in Fig.A.3. From these 

figures, it is very easy to estimate the branching ratios of Ws and Zs into different 

final states. We will have use of these estimates later. The W and Z bosons couple 

to the quark and lepton doublets shown in Fig. AL. 
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Figure A.3: Universal lepton coupling to W and Z gauge bosons. Favored quark 
couplings with color factors are also indicated. 

Finally, in Fig. A.4 the non-diagonal coupling of W gauge bosons to the quarks 

is defined via the unitary matrix whose approximate form is also given in Fig. A.4. 

This matrix is known as the Kobayashi-Maskawa (KM) matrix. 
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Figure A.4: Coupling of W gauge bosons to quarks. Approximate form of the 
KM matrix. 

The form of I& modifies the W-lepton coupling shown in Fig. A.2. The matrix 

V,,,, is almost diagonal in the charge changing strong eigenstates - the quarks. The 

V Y, N 0, term comes from comparing K + p1v to rr + PV decays. The V, - ef 

result comes from the B lifetime measurement. The 0: terms are inferred using 

three generation unitarity. The complex phase of V, allows CP-violation to occur. 

From simple dimensional arguments we expect that the widths, I?, of the gauge 

bosom should be proportional to the masses of the bosons times the coupling 

constants squared. Given electroweak unification this means a times the mass. 

So, if the mass is about 100 GeV, we expect widths of about 1 GeV. We will quote 

the exact calculations in Section C, when we discuss production properties of W 

and Z bosons. 

Now let’s turn to the masses of the electroweak-gauge bosons in the presence 

of spontaneous symmetry breaking. This means that there exists a Higgs doublet 



scalar field with a vacuum condensate which we represent by 7. When the kinetic 

terms in the Higgs LaGrangian are replaced by the covariant derivative, which we 

have already worked out, we find that masses for the W and Z are generated; the 

photon remains massless. 

www --t (&I*(@) 

<qs> = 

(WI*(@) - 

(A.61 

The W and Z masses are related to the coupling constants and the vacuum 

expectation value of the Higgs field. 

(A.71 

Mz = Mwl cos b’w 

The measured value of the Fermi constant is about 10-s per GeVs as measured 

in, for example, muon decay. We can relate this value to the coupling constant 

gs = gw and from there we can derive a value for the vacuum expectation value. 

ga = SW 
G/h = g&,/8M& 

II = fiMwlgw 

= & = 175 GeV 

(A4 

Of course, the masses of the W and Z bosons are to the same order of mag- 

nitude as the vacuum expectation value. The relationship in Eq. A.8 relates the 

weak coupling constant gw, along with the W boson propagator g&/M&, to a 

contact 4 fermion effective coupling G. The Weinberg angle is measured in neutral 

current interactions (see Eq.A.5.c) to be sins& -l/S. This means that g$ = 

e’/ sins Bw = 47rnz/ sins 0~. With a = l/137, gw - 0.65 or, MW = gwq/fi - 80 
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GeV and (0, - 26’) Mz - 89 GeV. The experimental data confirming these 

predictions will be shown in Section C of this note. 

The relationships were spectacularly confirmed at CERN when the W and 2 

bosom were both discovered in the mid 1980s. However, it is safe to say that 

many mysteries still remain. For example, just for amusement you can evaluate 

the critical density to close the universe. It turns out to be about 10 kilovolts per 

cubic centimeter. By contrast, the energy density due to the vacuum expectation 

value of the Higgs field is about 10 5s times larger. Clearly, it requires some tuning 

to make the cosmological constant small. 

What are the Higgs field couplings to the other particles in the theory? One 

allows not only a vacuum expectation value but an oscillation about it. In this case, 

the kinetic terms in the LaGrangian not only generate masses for the Ws and Zs 

but interactions between gauge bosom and the Higgs particles. These interaction 

terms will be important in discussing Riggs decay modes in Section C. 

(Dd)*(Dd) = $7 + H)'mv$ (d ;q7 + qzz 

These interactions are schematically shown in Fig. A.5; they are easily read off 

from Eq. A.9. 
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Figure A.5: Higgs couplings to electroweak bosons. 

We can now ask about the coupling of Higgs particles to the fermions in the 

electroweak theory. This begins by specifying Yukawa couplings with ad hoc cou- 

pling constants. 

Ly = G’&#d 

= G’f(q + H)t 

z mt?i + G’&H 

m = G’q 

(A.10) 

These Yukawa interactions generate mass terms for the fermions. However, there 

are unspecified coupling constants so there is no prediction for the fermion masses. 
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Even so, we find out that the Yukawa coupling constant is related to the mass. 

This means that the coupling of Higgs particles to fermions is proportional to the 

mass of the fermions. 

L1 = G’ieH 

(A.ll) 

This fact will turn out to be very important in search strategies for Higgs par- 

ticles. The implied Higgs couplings to fermions is shown schematically in Fig. A.6. 
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Figure A.6: Higgs coupling to fermions. 

What about couplings among the gauge bosons? We have already derived the 

covariant derivative in Eq. A.5.c. Given the fermion kinetic piece in the Lagrangian, 

the substitution 8 --t D generates the interactions shown in Fig. A.2 between gauge 

bosons and fermions. In an analagous fashion, the boson kinetic term (BiP)*(%Z’) 

under the substitution 8 -+ D obviously generates “quartic” couplings: 

D = &&,@,, @>=A, W,Z 
, 

(a@)*(aiP) ---t (Dip)(D@) (A.12) 

LI - g,aamh g;hwm 

These couplings are shown schematically in Fig. A.7. They are similar to those 

shown in Fig. AS. The triple couplings are proportional to gwp, due to the 0 factor, 
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while the quartic couplings only contain the fields themselves and are proportional 

tog&,. Clearly, the implication of Eq. A.2 is that gluons also have triple and quartic 

non-Abelian couplings. 
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Figure A.7: Couplings between electroweak bosons. 

In summary, what we have done in this Section is to very quickly and crudely 

define the constituents in the Standard Model, the quarks, the leptons, and the 

gauge bosons. Using the gauge principle, in a very schematic way, we have derived 

the interactions between the elements in the Standard Model. Those interactions 

are specified by coupling constants, one for the strong interaction g,, one for the 

electromagnetic interaction e, one for the weak interaction (we can conveniently 

use the Fermi constant), and the mixing that gives us the physical states, the 

Weinberg angle. One other unknown parameter in the theory is the mass of the 

Higgs boson. 

As an aid to memory, gluons are flavor blind. They only have color (strong 

charge). W and Z bosons are color blind, they only see flavor (weak charge). 

Leptons have flavor but no color, while quarks have both flavor and color (strong 

and electroweak interactions). 
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We are now in a position to use the interactions as specified in Section A and 

to look at the scattering of the constituents under the action of the various forces. 

That scattering is the subject of discussion in Section B. 

B. SCATTERING OF POINT PARTICLES 

We begin this Section with a discussion of the pointlike scattering of quarks 

and leptons. In the second half of this Section we will discuss the distribution of 

quarks within the hadrons that are the color singlet accessible asymptotic states. A 

familiar example of the scattering of leptons is the total cross-section for electron- 

positron scattering into p+p-. The cross-section is given in Eq. B.1: 

qe+e- + p+p-) = 4na2/3i 

= 87 d/i (GeVs) 

(B-1) 

A convention that we will adopt is that all elementary process and the kinematic 

variables associated with them are identified by (A). For example, & refers to the 

elementary cross-section and ri refers to the square of the center-of-mass energy 

for the fundamental pointlike constituents. The Feynman diagram for this process 

makes it obvious that + is proportional to the coupling constant to the fourth 

power or c?. It is also obvious that since there are no other mass scales in the 

problem the only scale for a cross-section is the energy itself. Numerically this 

cross-section is 87 nanobarns divided by .? in GeV1. This is a typical electroweak 

cross-section scale. 

Another familiar form for lepton scattering is given in Eq. B.2. This is the 

Rutherford scattering cross-section at low values of the momentum transfer i. This 

form corresponds to du/dR going like l/(sind)‘. 

d+(ep -+ ep) 

di 
N 4m=/iz P3.2) 

Now let us consider what evidence we have for pointlike quark processes in 

electromagnetic, weak, and strong interactions. Let’s start with the ratio of the 
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cross-sections for e+e- annihilations into hadrons to that for e+e- into muon pairs. 

Drawing a Feynman diagram, the e+e- annihilates into a virtual photon. The 

ratio should just be the ratio of the coupling constant for the photon to quark and 

antiquark pairs with respect to muon pairs and the sum over the final state colors. 

RE 
~(e+e- --t hadrons) 

cr(e+e- + p+p-) 

= (w:)Nc 03.3) 

This means that the R value is just the sum of the squares of the quark charges 

times the number of colors in the final state. A plot of the measured R value is 

shown in Fig. B.l. It is clear from this figure that the ratio is essentially constant 

in between thresholds for production of new heavy quarks. The magnitude of R 

confirms our assumption that the number of colors is three. There is the famous 

threshold at the charm-quark mass, another threshold at the b quark mass around 

the Y. People are looking at Tristan for the threshold indicating the onset of top 

anti-top production. 
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Figure B.l: Pointlike quark behavior in efe- -+ hadrons. R = ,q’:;‘:~~,“!,-,. 
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This data then is a good indication that quarks act like pointlike fermions in 

electromagnetic interactions. What about the situation in weak interactions? Are 

the quarks behaving like pointlike objects? Let’s start with Eq. B.4. 

dye) - &i/(i + M$)’ 

+ a&/B 

--t c&/M& 

03.4) 

In this case there is a second mass scale, which is the weak boson mass. That mass 

scale effects the propagator for the virtual W. We have two possible limits for the 

total cross-section for leptons. There is the high-energy limit, which is that limit 

wherein we have effectively only one mass scale because the weak boson mass is 

small. In that case, the limit is essentially that of Eq. B.l. The other limit is at 

low energies, where in fact the data presently exists. In that case, the propagator 

is such that the cross-section rises linearly with center-of-mass energy. 

u(vN) - G’S 

u(vN)/E, - G’M,v 

-. 3 x 10-3scm’/GeV 

N 0.03 pb/GeV 

P.5) 

If we identify the fourth power of the electroweak-coupling constant with the 

second power of the Fermi constant, we can get an estimate for the slope of the 

neutrino nucleon total cross-section as a function of neutrino energy. We assume 

that what is happening is that the inelastic scattering between neutrino and nu- 

cleon consists of the sum of elastic scatterings off pointlike quarks in the nucleus. 

Data for this process are shown in Fig. B.2. In fact, the order of magnitude that 

we’ve estimated for the process is close to what is actually observed, the scale being 

10-3scmz per GeV. We take this magnitude and the linear rise of the cross-section 

as good evidence that pointlike behavior of quarks in nucleons in electroweak in- 

teractions is exhibited. 
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Figure B.2: Pointllke quark behavior in UN deep inelastic scattering. 

What about in strong interactions. 7 Take the case of inclusive production of 

pions as a function of transverse momentum. At low transverse momentum there is 

an exponential dependence which appears to be some sort of collective thermody- 

namic effect and which dominates the inclusive cross-section. However, at higher 

values of transverse momentum, say above 3 GeV/c, at the ISR there began to be 

uncovered a power law behavior of the distribution. 

do 
d?l: - e 

-br + L 
fi 

(B-6) 

The ISR data is shown in Fig.B.3. What is happening here is that the expo- 

nential behavior is dying off and a pointllke power law behavior (associated with 

Rutherford type scattering) is being uncovered. This means that the quarks in 

hadrons also show pointlike behavior through their strong interactions. 
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Figure B.3: Pointlike quark behavior in high pl x0 production in pp collisions. 

Having convinced ourselves that quarks show pointlike behavior in the same 

way that leptons do for electromagnetic, weak, and strong interactions we can 

now turn to the form of the scattering cross-sections. The formulae for two-body 

scattering processes that are used in this set of lectures and their appropriate 

Feynman diagrams are shown in Fig. B.4. 
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Figure B.4: Elementary 2 -+ 2 processes referred to in this note. The appropriate 
Feynman diagram is included. 
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The column for the amplitude squared has the convention defined in Eq. B.7. 

What is factored out from the amplitude are the coupling constants at the two 

vertices and the dimensionally necessary one over P that one has for the differential 

cross-section. We can now read off the form of 1 Al’ from the Feynman diagram. 

For example, in the process quark anti-quark into quark’ anti-quark’ we have the 

one over ? contribution due to annihilation into a virtual photon propagator. This 

formula is exactly as seen already in Eq. B.l. For the exchange graph, 44’ + qq’, 

the photon propagator gives us a one over iz piece and again this is something we 

have already seen in Eq. B.2 for differential Rutherford scattering. 

There are four terms for the gluon-gluon scattering cross-section. The reason 

for that is as we said in Section A; gluons are themselves strongly charged and 

so they self couple into trilinear and quartic vertices. The four terms are easily 

read off as l/is (annihilation), l/i’ or l/iLs (exchange) and 3 (4 gluon vertex). 

Incidently, the gluon-gluon cross-section at 90° is numerically much larger than 

the other cross-sections given in Fig. B.4. This means that if all else is equal, gluon 

scattering dominates over say quark scattering or quark anti-quark annihilation. 

Gluon quark scattering or gluon anti-quark scattering can lead to direct photon 

production. In this case we have a fermion propagator whereas in the previous 

cases we had a boson propagator. That leads to a one over fi behavior in the 

elementary processes for exchange or a one over i behavior for annihilation. This 

comparison between fermion and boson propagators in the elementary processes 

will have implications which we’ll see later. 

Finally, in heavy quark anti-quark pair production we have gluon-gluon anni- 

hilation giving a one over ;j2 propagator plus another Feynman diagram for gluon- 

gluon fusion with a quark propagator giving one over .6 or l/C behavior. The 

cross-sections for many other elementary processes have been calculated by many 

authors and they are in the References given in this note. 

Going beyond elementary two-body processes we will occasiondly need to think 
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about radiative and other 2 + 3 processes. The Feynman diagrams for fermion 

scattering (which is a 2 -+ 2 process) and bremsstrahlung (which is a 2 -+ 3 

process) in a static Coulomb field are shown in Fig. B.5. 

P 

,ZP= k 
/ / 

(I-Z)P= p’ 

Figure B.5: Diagrams for fermion scattering and bremsstrahlung in a static 
Coulomb field. 

From non-relativistic quantum mechanical perturbation theory we know that 

the amplitude for a process is proportional to one over the energy difference be- 

tween the initial and final state for the virtual process. When one evaluates AE in 

the case of bremsstrahlung one finds that the amplitude goes like one over z where 

z is the momentum fraction carried off by a photon. In the ultrarelativistic limit 

for the fermions, 
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E = \lpz + nz2 -p +TTZ=/~~ 

A- l/AE = l/(E, - Ef) 

AE = p2 + m*/2p - tp - (I- z)~ - d/2(1 - z)~ z 
- m=/2p - [ 1 1-Z 

A N l/z 

(f3.8) 

In order to conserve energy and momentum in a virtual process the thing for 

the massless photon to do is to be as soft as possible. This gives us the standard 

radiative behavior that the cross-section goes like one over k, where k is the photon 

momentum. The complete cross-section for bremsstrahlung, normalized to the 

2 + 2 process of fermion scattering is given in Eq. B.9: 

$0 - (;) (2) ($) [+ [zj:] (B.9) 

Looking at the diagrams in Fig. B.5 it is obvious that this cross-section ratio is 

proportional to a. The (dk/k) factor for this radiative process has already been 

explained. Finally, there are some directional factors. They imply that the soft 

photon is preferentially radiated collinear to the momentum in either the initial 

or the final state. The directionality can be justified by recalling that in dipole 

radiation the polarization vector is parallel to the electric field. We know that the 

electric field impulse of the fast moving particle is perpendicular to its direction of 

motion. This in turn means that the dipole radiation is transverse to the electric 

field or parallel to the direction of motion of either the incoming or outgoing 

fermion. These results are derived in many books on electromagnetism. We will 

assume that the radiation is collinear in future applications. 

Of course, what this means is that if we have a quark or gluon at some partic- 

ular value of momentum, it will evolve by a cascade process. This is very much 

in the spirit of electromagnetic cascade development due to bremsstrahlung and 

pair production. The evolution equations were given in Rossi’s classical book on 
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electromagnetic showers many years ago. The gluons being coiored can themselves 

produce pairs of gluons. The quarks can bremsstrahlung a gluon, whereas the 

gluons can make pairs of quarks and anti-quarks. The diagrams for the evolution 

of the quarks and gluons by bremsstrahlung, pair production, and triple gluon 

coupling are shown in Fig. B.6. 
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Figure B.6: Diagrams for evolution of quarks and gluons. a) Quarks by 
bremsstrahlung and pair production, b) Gluons by bremsstrahlung and triple 
gluon coupling. 
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The form for the evolution equations of, say, zg(+), follows from our previous 

derivation, Eq. B.8, of the l/z piece of Eq. B.9. For example, we can read off the 

contribution to evolution as given in Eq. B.lO. The piece due only to low c gluons 

is shown below: 

dbT?(~I ‘v z/,‘d.( [&+ ;] [YdY)l+ ;IYdYN) 

d[zs(z)l - : )r ; [YdY)l 
J 0 

(BSO) 

z: = yt 

If we ignore a possible 4’ evolution of a, (discussed later), we can do the integral 

very crudely. At low I values; 

a.b I/=* 
%?(~)I N 7 1 (I,y)lY9(Y)I I 

4w(+)l _ ed In 1 [ 01 bS(~)l r z 
(B.ll) 

h(~)l - e[(n.bl*)W/.)l 

One can see that the gluon distribution at low + is more divergent than l/z 

due to a pile-up of gluons at z = 0 caused by radiative evolutionary processes. 

This fact will have some importance in the discussion of “minijets” in Section D. 

Now in fact, we are almost always going to assume that if we found the distribu- 

tion of quarks inside a proton, that distribution is true for all values of momentum 

transfer. As we have shown, this is not the case. The distribution functions have to 

evolve because the interactions imply that naive scaling cannot be true. However, 

since the effects are small and since we are interested in simple order of magni- 

tude hand calculations, we will no longer consider evolution of the distribution 

functions. For example, from r~ = 10 to Q = 100 GeV the distribution functions 
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of quarks varies only by about 20%. There are many uncertainties in hadronic 

calculations larger than this, so we just ignore evolution. 

There is another evolution which is that the coupling constant also depends on 

the momentum transfer scale. This means that the strong coupling constant (x. 

L‘runs” in the sense that it is momentum transfer dependent. 

(B.12) 

a,[( 10)2] - 0.21 
CY.[(lOO)2] - 0.13 ’ * = o.2 GeV 

For example, at (10 GeV)* CI. is 0.21 where at (100 GeV)* it is 0.13, assum- 

ing that the A parameter is 200 MeV, which is within the range of experimental 

determinations. Obviously, (see Eq. B.12) A is that scale where the strong interac- 

tions become strong. The reason for this running of the coupling constant is fairly 

straightforward to see. A schematic of the evolution of CI, is shown in Fig. B.7. 

e+ 

a) e+~* 

Figure B.7: Schematics for evolution of coupling constants. a) Vacuum polariza- 
tion, b) Gluons with both fermion and gluon loops. 

For photons, we have a vacuum polarization due to the cloud of virtual electron- 

positron pairs. This process also occurs for gluons making virtual colored pairs of 
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quarks and anti-quarks. However, gluons themselves (being “charged”) can couple 

to gluon-gluon pairs. This dilutes the effect by carrying color off from the original 

color source. There is a competition between these two effects. For the appropriate 

number of fermions, the color dilution factor wins which means that the strong 

force gets weaker as one looks closer and closer. This behavior is called asymptotic 

freedom. We’ll largely be operating at electroweak mass scales of 100 GeV, so we’ll 

take a, to be reasonably constant. Since the variation of cxO is logarithmic, and 

since we are only making hand estimates, it makes sense to also assume a constant 

strong interaction coupling constant. 

Finally, if we are going to look at proton anti-proton collisions we need to 

specify how the quarks are distributed within the proton. Implicitly, what we are 

assuming is that we can use an impulse approximation, so there are no quantum 

mechanical phases involved. This is just a distribution function. Diagrammatically 

what is happening is that a parton in deep-inelastic scattering has some fraction, C, 

of the hadron momentum and is scattered by a gauge boson where the distribution 

function is given by f(c) as shown in Fig. B.8. 

Figure B.8: Parton with momentum fraction e of the hadron p scatters a gauge 
boson 4. f(e) is the distribution function of the parton. 

If we work out the kinematics for that process as seen in Eq. B.13: 

(EE+ d’ = 4 
EZMZ+qZ+2cp.q--,$ = 0 (B.13) 

-41( 1 + m$/q’) 
E = 2p.q 

- ZE,(l + m;l$) 
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We can see that if we ignore all mass scales (at high values of q’), then E is in fact 

proportional to Bjorken z. BJ ‘or k en z is defined to be some function of the two 

kinematic invariants in the problem. Since these invariants can be determined by 

only making measurements of the lepton, we can measure the quark momentum 

distribution by measuring the incoming and outgoing lepton in deep-inelastic scat- 

tering. Note that if the quark is not heavy, then Bjorken’s z parameter is in fact 

identically the momentum fraction of the parton in the proton. 

The reason we resort to mere data to find this distribution is that it is a non 

perturbative effect. Hence, at the moment, it is uncalculable although it is in 

principle a solvable problem in quantum chromodynamics. However, since the 

coupling constant becomes large at low values of q2 (characterized by the 200 MeV 

value for A), perturbative calculational techniques break down. For the moment 

we will simply take the distribution functions as found from the deep inelastic 

scattering of electrons, muons, and neutrinos on nucleons. These distributions are 

shown in Fig. B.9. 

xf(x) 
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Figure B.9: Parton momentum distribution functions for the proton, zf(z). 

If there were three and only three valance quarks in a proton, we would expect 

the distribution function to be a 6 function at an r value of l/3. However, there 

are radiative processes where the valance quark could radiate a gluon. Due to 

momentum conservation this interaction lowers the average value of the z of the 
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valance quarks below l/3. There are also higher order processes where a gluon 

radiates and before it is reabsorbed a quark anti-quark virtual pair materializes. 

Hence, there are anti-quarks in a proton. These are called the sea distributions. 

We use a parameterization of the momentum fraction, zf(z) to be a power law in 

z times a power law in (1 - z): 

xf(x) = az”(1 - 2)s 

m,(x) ‘v 1.8&(1 -z)” 

x&(x) N 0.7&1-z)” 

xa(x) = d(x) = 22z(+) 

- 0.2( 1 - 2)” 

(B.14) 

There are two valance up quarks and one valance down quark in the proton. 

Their average + value is somewhat less than l/3. The sea quark distributions have 

a number density proportional to one over z, as we expect for objects which are 

radiatively created. f(z) is defined to be a distribution function, which means that 

f(z)d+ is the number of partons between + and 2: + dz. Since we know that z 

is also the momentum fraction, zf(c)d I is the momentum distribution of partons 

between z and z + dr. 

The gluon exists in the hadron only due to a radiative process. It therefore 

has a number distribution which goes as one over z just as the sea partons do. 

In particular, we know from deep inelastic scattering that the quarks account for 

only half of the momentum carried by the proton. The rest is neutral and is not 

seen in electromagnetic scattering. Hence the neutral gluons have a momentum 

distribution which is normalized to l/2. 

+g(x) = 7/2(1 - x)” (B.15) 

J 
xg(x)dr z l/2 

It is obvious from the distribution functions that the number of radiative sea 

partons is infinite; there are an infinite number of soft partons. This is exactly the 

same situation (for the same reason); there are an infinite number of soft photons 

in a radiative process. On the other hand, the number of valance quarks is finite 

and the sum of up plus down number distributions is equal to three. That is 
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the valance quark sum rule. We will use these distribution functions in all our 

subsequent calculations where we will assume that they have not evolved in any 

way. 

Given that there are partons distributed in the proton, we need not only the 

distribution functions but we need to relate the kinematics of the subprocess to 

that of the hadron-hadron scattering. The kinematics are illustrated in Fig. B.lO. 

A a 
P - !? 

XIP - -XeP - 

Figure B.lO: Kinematics of parton-parton processes in hadron-hadron collisions. 

A parton with momentum fraction +r from hadron A (with some distribution 

function) and a parton with momentum fraction zr from hadron B scatter into a 

system with sub mass ;j and momentum fraction +. 
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s = (PA + PS)’ - 4pApB - 4$ 

i - 4p1pz - 4qz1$ - xlx*s 

5 = 2PLlv5 = 2(+1 - +I& 

= XI-L1 

T E i/s = x1x2 

(B.16) 

It is fairly easy to see from the kinematics that zr and rs are tagged by the 

two-body mass i and the Feynman 2 value of the produced system. We define a 

parameter r which is the ratio to the sub energy of the partonic process to the 

total center-of-mass energy of the hadronic process. We will see in Section C that 

J; is, as a rule of thumb, a typical + value for the parton (see also Eq. B.16). 

The final state orientation is characterized by some scattering angle d through 

the Lorentz invariants i or 6. The initial state z and mass are specified by 11 and 

12, while the final state is determined by the two-body scattering angle 8: 

t^ = (Ps-P1)a 

N -2p,p,(l - cos d) 

- -i/2( 1 - cos d) 

A = (P3 -pa)’ 

- -i/2(1 + CO6 4) 

(B.17) 

Assuming no intrinsic transverse momentum for the quarks, the final state 

kinematics are such that +s and z4 are back-to-back in azimuth but not in polar 

angle. We know that confinement means that intrinsic transverse momenta of scale 

N A must exist. We will ignore this in all that follows, and almost always deal 

with scales >> A. One can think of a particle of mass & and momentum z decay 

with angle 8. It is easy to see that 7 and p of this particle in the pp center-of-mass 

frame are: 

7 = (21 +zdPJ; (B.18) 

P = (XI -x2)/(x1 +x2) 
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After the “decay,” the daughters have p1 = ($) sin i and longitudinal momen- 

tum zl. 
4 

23 = ; [(x1 - xa) i cosqx; + L*)] 
4 

tan 61 
4 

= 2J;sin d/z% 
4 

(B.19) 

For example, at a mass of 400 GeV in 2 TeV pp collisions, 11 = zr = 0.2 at 

r = 0. Then 834 = 180’ = 8s4. However at z = 0.3, +i = 0.4, zr = 0.1 and 

0s4 = 106” (if i = 90’). These kinematic relations are useful in finding jet-jet 

angular distributions and the like. In Section D, we will assume that h can be 

extracted from energy and angle measurements of the jets. 

In this Section, we have discussed the pointlike behavior of quarks as seen 

in electromagnetic, weak, and strong interactions. We have also tabulated the 

2 -+ 2 processes which will be used in discussing pp interactions and have briefly 

touched on 2 --t 3 radiative processes using the well known electromagnetic process 

of bremsstrahlung as a paradigm. Lastly, we have discussed the number density 

distribution of the quarks and gluons which will be used in subsequent Sections. 

The basic kinematics relating parton-parton processes to hadron-hadron processes 

have been outlined. These first two Sections give us all the tools that we need to 

go forth and estimate proton anti-proton collider physics processes. 

C. HADRON-HADRON PRODUCTION OF PARTICLES 

Since we now know that specification of z1 and +s defines the initial state, 

it is clear that the hadron-hadron cross-section is just the joint probability for a 

parton in hadron A and a parton in hadron B times the partonic cross-section. The 

probability is just the number distribution f(z)d I which gets us the probability of 

a parton having an z between z and z + da. 

du = PaPed& = C f(z,)f(z,)dr,dz,d& 

P(q) E fif(x,)dx, 

cc.11 

There is also a color factor, C, which takes into account the fact that all possible 

colors of quarks and gluons within a proton exist, but that asymptotic freedom 
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tells us that color is absoiutely bound so that the asymptotic hadron states need 

to be colorless. We are only allowed certain combinations of partons from hadron 

A and partons from hadron B. This color factor for quarks is shown in Fig. C.l; 

for quarks C = 3, while for gluons C is clearly = 8. 

RR ,GG,BB 
m----e- 

Figure C.l: Color factor for colored quark and antiquark fusing into a colorless 
final state. 

For convenience we will write the differential cross-section not in terms of zi 

and zs to specify the initial state, but in terms of rapidity and invariant mass. 

Using the relationships that we derived in Section B, it is simple to write down the 

Jacobean relating those two quantities. In fact, the differential element drl dzs is 

just drdy. 

I = 2p;,/fi = 2Mlsinh(y)/& 

du = Cf(z,)f(zl)dTdyd& 

In most of what we do we will use the differential cross-section at rapidity 

value of zero, which is 90” in the center-of-mass frame. The equations simplify in 

that case and what we are looking for is a simple straight forward evaluation of 

the relevant formula. Note that, most cross-sections are on a “rapidity plateau,” 

where the maximum value of the cross-section occurs at y = 0. 
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+1x2 = l- 

x, -+* = x (C.3) 

11 = 22 = J; = Ml& = V% iyzaEO 

At rapidity 0, +r is equal to z2 which makes the differential cross-section particu- 

larly simple. 

= cf(v’?f(J;P (C.4) 

Note that in Eq. (2.4 there is an implicit sum over all possible partons in hadron 

A and hadron B which can contribute to the process which is schematically indi- 

cated by d?. Rearranging Eq. (2.4, we can get the expression given in Eq. C.5.b 

where the left-hand side is dimensionless. The right-hand side depends only on 

the source distributions of partons in the hadron, color factors, and the coupling 

constants, because (recall Section B) d& is by dimensional arguments proportional 

to l/i. 

= c[zf(~)~~(~)l.=~;(d~/-j) 

6) 2~3 [+)44]e=JT WI 

In this Section, we will concentrate on particle production. We are thinking of 

parton-parton formation of a resonance specified by a central mass M and width 

l?. If you recall from elementary books on quantum mechanics, a finite lifetime 

of a state implies that the Fourier transform has a Brite-Wigner form in the en- 

ergy domain. In particular, since unitarity requires that the cross-section in some 

particular partial wave be limited: 

* < 4x ;t 72.7+ 1) 

I 
Sdri = 7r72.I + l)(r/M) 

d& - ~‘(25 + l)(r/M)6(rj - M2) 

(C.6) 
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Integrating the Brite-Wigner shape one gets an inverse tangent function for a 

nonrelativistic Brite-Wigner because one goes once around the Argand diagram. 

The integral over all center-of-mass energies is given in Eq.C.6. If the width of 

the resonance is narrow with respect to its central mass value, we can replace the 

Brite-Wigner form (which has a full width of r) by a 6 function in energy space. 

The constants are chosen so as to give the same integral value over all center-of- 

mass energies. In this narrow width approximation we can integrate the double 

differential cross-section given in Eq. C.5 over all values of ri. The result is given 

below. 

cc.71 

It seems clear that the cross-section should be proportional to the formation width 

rff. C is the color factor relevant to the source functions specified by f(z). The 

width in Eq. C.7 refers to the partial width for formation by the sources indicated 

by f and f. There is also a spin sum over initial states and a spin average over 

final states which leads to a factor of 4/3 if the sources are quarks with respect to 

a factor of 1 if these sources are gluons. 

We define a dimensionless luminosity, L, such that the scaled cross-sections, 

i.e. dimensionless quantities, are particularly simple. The luminosity absorbs all 

the source distributions leaving only the elementary couplings. 

IJ = c[d(~M~)l.=J; CC.81 

Then one finds that, if d& - T( “cz”)~/~ or if l? N (“a”), the formulae are very 

simple. 

(C.9) 
M’($),;, = +@~f$-] 

N L[7?(2J + l)“a”] 
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These are our two basic formulae which we will apply over and over again in 

different formation and scattering applications. 

When one wants to estimate the total cross-section and not just the differential 

cross-section we can use the definitions of rapidity given in Eq. C.2. We estimate 

the rapidity range for a given mass when the limit in x of zt 1 is reached. The 

quantity Ay is roughly the width of the rapidity “plateau.” 

+ = +l, + - (M/&)&‘, y = +c 1=(&/M) (C.10) 

AY - 2 ln(&/M) = 2 ln(l/&) 

Using Eqs. C.9 and C.10, one can make the crude assumption that the cross- 

section is just (dudy),=, times the allowed kinematic range Ay, i.e., the value on 

the plateau times the width of the plateau. 

(C.11) 

The first thing we notice looking at Eq. C.ll is that we can predict a scaling 

behavior. The quantity M3u/r should be a function only of the parameter T. In 

order to test this scaling prediction and also the absolute value of the cross-section 

shown in Eq. C.ll we plot in Fig. C.2 the cross-section for the production of vector 

mesons in pp collisions. 
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Figure C.2: Scaling behavior in pp production of vector mesons. The smooth 

curve is the hand estimate. 

In this case, we use Eq. C.12 which explicitly assumes gluon-gluon formation of 

these resonances. 

r ( )I 7r’( 25 + 1) 
CT- - 

M3 
4 ln($)] [(;) (l-fi)6]2 (C.12) 

Obviously, the scaling prediction is well verified. In particular, assuming gluons 

as the source functions, we reproduce the threshold behavior of the processes very 

well. In these excitation curves, increasing s at fixed kf means decreasing 7. Since 
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fi N z1 - zs, decreasing J;r means decreasing x or increasing source luminosity. 

Hence, the rapid rise. Last, but not least, the absolute value of the cross-sections 

is very nicely reproduced using the distribution functions which we have taken for 

the gluons. 

This correspondence of the simple estimate with the data is very encouraging 

and leads us to go on and try to apply these formulae to other processes. In 

particular, we know that heavy quark-antiquark bound systems couple to two and 

three gluons. For example, the qe coupling to two gluons means that qc will have 

a shorter lifetime than the 4, just as is the case for ortho and para positronium. 

Therefore the q= should have a larger width by something roughly like the strong 

coupling constant. Hence it will be more copiously produced since the production 

cross-section is proportional to r. 

7. + 99 

ti + SW (C.13) 

r 9. > r+ - ~(4 

A complete calculation of the predicted fi cross-sections of quarkonium bound 

states vs. center-of-mass energy is shown in Fig. C.3. 

&- (GeV) 

Figure C.3: Predicted pp cross-sections for (90) bound states vs c.m. energy fi. 
The point, 0, is a hand estimate, while the points, l , are 400 GeV pp data and 
UAl data. 
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For comparison one can use Eq. C.12 as a hand estimate of Q production at a 

center-of-mass energy of 100 GeV. Th e result is a cross-section of 11 microbarns. 

IIC : 

6 = 100 GeV, ,J’? = 0.03 

r - 10 MeV, Ay - 7 

4~) - 11 @ 

(C.14) 

This hand estimate is also indicated in Fig. C.3 and is in good agreement with the 

exact predictions. We again have a steeply rising curve due to the fact that at 

fixed mass, larger 4 means smaller x and hence higher luminosity L. 

If the widths are the same, since Ay is only logarithmically dependent on r, 

we expect that the nc to nb cross-sections, at very high energies, are in the ratio 

of the cube of their masses. Note also that $ production is suppressed relative to 

Q production. The essential reason is that the formation width is larger for the 

n= than the 4. The n= couples to two gluons while the 4 (because of C number 

conservation) must couple to three gluons. The 400-GeV pp data which is plotted 

on this graph seems to confirm this suppression of $s, although 7. production has 

not yet been observed. Extrapolating using Eq. C.12 to the Fermilab Collider at 

center-of-mass energy of 2 TeV, one expects the nI, cross-section to be about 80 

microbarns and the na cross-section to be about 3 microbarns. Certainly these are 

all large cross-sections. 

At the CERN Collider, in the UAl experiment, both $s and Ts have been seen 

in events with isolated dimuons. However the trigger requires high pl, which causes 

a large reduction of the cross-section. The data is hence difficult to absolutely 

normalize so as to check the cross-section predictions for $J and Y at higher collider 

energies. Within large errors, it does appear that these cross-sections are consistent 

with the predictions. One can consider that agreement as weak confirmation of 

the predictions shown in Fig. C.3. 

We now move on to the production of the W and 2 gauge bosom in proton anti- 

proton collisions. The coupling of the Ws to fermions and leptons was discussed in 
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Section A along with the KM matrix. A rough approximation to that matrix (with 

a Cabbibo angle of about a fifth) was also given in Section A. Adapting the color 

factor of l/8 in Eq. C.9 to that for quark anti-quark production and the spin sum 

for the formation width we get the expression given in Eq. C.15 for the differential 

production cross-section for vector bosom formed in quark anti-quark collisions. 

(C.9) + 

izq(z)ztj(z)lz=J; (C.15) 

4r*rp + 4 = 
M3 I 

We clearly need the width for quark anti-quark coupling to the gauge bosons. 

In Section A, we noted on dimensional grounds (and on the grounds of electroweak 

unification) that the width would be dominated by quark anti-quark decays due to 

the color factors. It should be of order LL times the mass of the bosom. The exact 

result for the partial width will merely be quoted in Eq. C.16. The amplitude 

is proportional to the coupling constant times the quark coupling matrix. The 

dynamics is that the vector boson polarization is dotted into the leptonic final 

state current. 

A - gwVq&,, . J” 

r - skM, 

r(w + ev) = 
qw --t ud] 

rz [&[Mw = [z] = [$] Mw 

- l/3 GeV 

(C.16) 

Indeed the width is proportional to the weak coupling constant squared times the 

mass of the W. The partial widths for quark decays relative to leptonic decays are 

in the ratio of 3 to 1 due to the color factors. 
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The way that the leptons from the decay of the produced CV are detected is 

to use the Jacobean peak method. One assumes that there is no intrinsic parton 

transverse momentum, so that the 21 and d fuse into a W boson with no transverse 

momentum. That means the scale of transverse momentum in the final state is 

naturally that of the mass of the W itself. 

i 2- $1 = z~m 8 -. pi 

d(g) = ; cos &qcos i) (C.17) 

At 90’ in fact the transverse momentum is equal to half the mass of the W. The 

distribution of transverse momentum peaks at 90”. This is a very strong peak, 

1/ cos 8, which is washed out only by the transverse momentum of the parent 

quarks or by initial state radiation. UAl data from CERN on the Jacobean peak 

for electrons is shown in Fig. ‘2.4. Indeed there is a very strong peaking at about 

half the W mass. We can take this data as a posteriori justification for the neglect 

of “intrinsic” transverse momentum of the partons. 
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Figure C.4: Jacobean peak in UAI~ data for electrons. 

The W was observed at CERN in data samples with isolated leptons accompa- 

nied by large missing transverse momentum indicating that a neutrino had carried 

off momentum outside of a hermetic detector. By comparison, the 2 boson was 

found by calculating the invariant mass of isolated dielectrons. Data from UAl 

is shown in Fig. (2.5. The background in Fig. C.5 comes from a process (called 

Drell-Yan) which will be discussed in Section D. 
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Figure C.5: Dielectron invariant mass, UAl data. 

The masses of both the 1%’ and Z were predicted before their discovery. If 

we look back at Eqs. A.4 and A.8 we see that the W mass is proportional to 

the coupling constant times the vacuum expectation value. You remember that 

the vacuum expectation value was evaluated in terms of the Fermi constant. The 

coupling constant in turn was unified to be proportional to the electromagnetic 

coupling constant. Therefore, the only thing that was left was the Weinberg angle 

of rotation. That angle was measured in weak neutral-current interactions in 

neutrino scattering (see Eq. A.5 and Fig. A.2) to have a value, sin? &v roughly 

l/5. Therefore the masses were predicted and their subsequent confirmation was 

a great triumph for the Standard Model. The width, Tr would tell us the number 

of light neutrino generations. Until now, th e measurements of I?r (see Fig. C.5) 

have been dominated by experimental errors. 

Let’s turn our attention now to the cross-section for production and decay of 

the IT/ bosom. Color counting of the Cabibbo allowed elements of the KM mixing 
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matrix lead us to estimate that the branching ratio into electron plus neutrino is 

about l/9. 

1 1 1 3 3 
: : 

eve : /‘Vu rv, ud cs 

B - l/9 

(C.18) 

This leads us to a crude estimate (see Eq. C.15) of the cross-section times branching 

ratio given below. 

uB - 
‘hT(W -+ d) 1 

3&P 0 cl 
= 1.1 nb (C.19) 

The scale at Tevatron energies is clearly nanobarns. In looking at the threshold 

behavior for W boson production we use the differential cross-section at y = 0 

from Eq. C.15, the rapidity interval from Eq. C.10, the width from Eq. C.16, and 

the branching ratio from Eq. C.18. Putting all this together we still have different 

source functions. There are valance-valance interactions for W-, U. from the anti- 

proton and a d from the proton. There are also valance sea and sea-sea interactions 

which obviously become more important at higher energy where the r value is 

small. Very near threshold, the valance quarks will dominate since the r value is 

large. 

xuyxd, - J;(l- J5)T vv 

xu,xd - (T)‘/4( 1 - J;)” vs 

ztixd - (1 - J;)‘” ss 

(C.20) 

These various hand estimates of the cross-section are given in Table C.l 
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Table C.l. 
Hand estimated cross-sections for W 

production at 3 values of 4. 

fi(TeV) J; 41 VI 
vv “6 

0.5 0.16 3.6 0.50 0.17 

1.0 0.08 5.0 0.63 0.42 

2.0 0.04 6.4 0.55 0.63 

The data and “exact” predictions are shown in Fig. C.6 along with the hand 

estimates. Clearly the hand estimates work fairly well and there is a complicated 

energy dependence between the CERN experiments and the Tevatron. In the 

UA experiments, it is clear that one is dominated by valance-valance whereas at 

the Tevatron valance-sea is certainly of comparable importance and the sea-sea 

contribution is rising very rapidly. It is also clear that the absolute value of cB 

is reasonably well predicted by the hand estimates and is in plausible agreement 

with the actual data points. 
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Figure C.6: Data from UAl, UA2, and CDF along with estimates from Table 

c.1. 

Consider now the angular distribution of the leptons in the decays of W bosons. 

You recall that in the electroweak theory we put in the V-A structure essentially 

by hand. That structure forces fermions to be left-handed and anti-fermions to 

be right-handed. Thus, quarks are left-handed, anti-quarks are right-handed, elec- 
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trons are left-handed, positrons are right-handed, anti-neutrinos are right-handed 

and neutrinos are left-handed. The data from UAl on the angular distribution of 

the decays is shown in Fig. C.7. Also shown in that figure is the helicity structure 

of valance-valance production. If valance-valance scattering dominates (as it does 

from our expectations of hand estimates) then we find that positrons preferentially 

go in the anti-proton direction and electrons go in the proton direction. The data 

is not only a confirmation of the V-A structure of the charged-weak interactions 

but is confirmation of the valance-valance character of IV production at the CERN 

Collider. 
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Figure C.7: UAl data on the angular distribution of W -+ ev decays. 

Another observable in IV production is the x distribution. We have two equa- 

tions relating zr and z2 to the Feynman 2: and the mass of the system. We can 
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invert those equations and solve for z1 and z2 as a function of 7 and z. The 

minimum value for z1 occurs when z = 0, z1 = fi. 

21z’z = i/3 = T 

21,2 = ; [%!GT-&Lt] (C.21) 

2112 IZ>>T --+ r+rjx 
0 + T/X 

It is easy to see that for I much greater than r, z1 approaches z and 22 approaches 

zero. In the CERN Collider data we are dominated by valance-valance produc- 

tion. We know the differential cross-section is basically the product of the parton 

distribution in the proton as a function of z1 times the parton distribution in the 

anti-proton as a function of z2. In the limit where z is much greater than T we find 

that the z distribution of the W is in fact, just the 2: distribution of the partons. 

Assuming valance-valance production, the form of du/dy is simple. 

du 

dy 
- f(4f(~ld 

- (1 - x1)=(1 - ./z# (C.22) 

-+ (1 -+)3(l) 

Data on the 2 distribution of the produced W bosom from the CERN Collider 

are shown in Fig. C.8. On top of that data and exact calculations we have plotted a 

hand calculation which is the product of the valance distributions. The agreement 

is impressive in both cases. Obviously this is a cross check of our understanding of 

the way the W bosom are produced at UAl. We expect that they are dominated 

by cd for the W- and ud for the W+ and that the sources are valance quarks in 

the proton and anti-proton. 
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Figure C.8: UAl data on the z distribution of PV production. 

Another kinematic variable that is accessible is the transverse momentum of 

the W boson. We have already said that since the partons have no or limited 

transverse momentum, the W will come out with small transverse momentum. 

This is indeed the case. However, there are higher order processes where quarks 

radiate gluons or scatter off gluon distributions in either the proton or anti-proton. 

The amplitudes in this case are reduced by a factor a. with respect to that for W 

production with no jets. 

Data for the distribution of transverse momentum in W production at the 

CERN Collider is shown in Fig. C.9. The data is plotted so that only the tail (in W 

transverse momentum) is shown. Indeed the transverse momentum is reasonably 
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limited. almost all of the data is contained below the characteristic mass for 

partonic scattering which would be the W mass. This data tells us why we can 

see a Jacobean peak in the lepton spectrum. The line corresponds to a calculation 

of higher order radiative processes. 
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Figure C.9: UAl and UA2 data on the pl distribution of W production. 

It appears that the ratio of the cross-section for IV plus jets to the cross-section 

for W without jet activity is a very clean way to extract the strong coupling 

constant. That ratio should be something like a, and it is measured at the CERN 

Collider to be 0.13 (presumably at a scale q* equal to MS). This value agrees with 

other measurements of 01.~ and is our first indication that more complicated 2 -P 3 

partonic processes exist. 

If we look back at Fig. A.3 it should be reasonably clear that a direct mea- 

surement of the 2 width would tell us the number of light neutrinos. We could 

compare that number to the cosmological estimates based on the primordial deu- 

terium abundance. Obviously, the number of replicated generations is a funda- 
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mental quantity in physics. However, since the 2 mass resolution is not adequate 

at present, we must rely on a more indirect method. Take the experimental ratio 

of the cross-section times branching ratio for Ws into lepton plus neutrino and 2s 

into lepton pairs and compare them with theoretical expectations. One assumes 

that one can make a plausible calculation of the relative cross-sections because one 

needs only the relative up and down valance quark distributions. The couplings 

are defined by neutral current measurements (sin&) so there is some minor the- 

oretical uncertainty in the ratio of the cross-section times branching ratio but it is 

not particularly large. Whether the top is kinematically accessible for W and 2 

decays is unknown and that sets the basic uncertainty. The cosmological limit on 

the number of generations i.e., the number of light neutrino types is roughly three. 

At the 90% confidence level, if the top quark mass is heavy, the data from the 

CERN Collider imply that the total number of generations is also three. However, 

we should note that top quark masses above about 40 GeV are not yet excluded 

by direct measurement. Data from the Tevatron Collider will push the top mass 

limit up and reduce the statistical error on gig in the very near future. This 

new data will greatly improve the determination of the number of generations. 

We should also note that there is no compelling reason why the neutrino need 

be massless. In fact, the closure density from cosmology only requires that a 

light stable neutrino have a mass roughly 50 electron volts or less. If succeeding 

generations have heavy neutrinos which are unstable, these bounds are not relevant. 

Having discussed the production of W and 2 gauge bosons let’s turn our atten- 

tion now to Higgs scalars. If you recall from Section A, the interaction LaGrangian 

of Higgs scalars with fermions was a fairly standard Yukawa type interaction with 

a coupling constant, modified by the ratio of the fermion to the W mass. This, of 

course, means that the Higgs couples to the heaviest available fermion. Relative to 

say, the W boson, the width of the Higgs is proportional to the Riggs mass itself 

(as it has to be on dimensional grounds) times the ratio of the mass of the fermion 

divided by the mass of the W squared. This means that direct proton anti-proton 

production of the Higgs via qij is intolerably weak. 
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IyH + qq) = [y(z)‘] MH 

r(H + 99) = [T ($Lp [ (!.)‘!q MH (C.23) 

J?(H+ WW) = 

What about gluonic formation? There is no direct coupling of the gluons to 

the Higgs because flavor is the weak charge, not color. However, the gluons can 

virtually decay into quark anti-quark pairs via the color coupling followed by quark 

anti-quark fusion into the Higgs. Since quarks have both color and flavor they can 

bridge strong to weak interactions. The Feynman diagram is shown in Fig. C.10. 
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Figure C.10 Diagrams and coupling factors for Higgs boson couplings to quarks 
and gluons. 

The relative width for the gluon decays is given in Eq. C.23. It’s similar to 

the functional form of the width of Higgs to quark anti-quark. However, there 

is an additional vertex factor of cr:, and there is a loop integral over the internal 

momenta which is represented by the symbol I ‘. Obviously, for a heavy Higgs the 

reduction factor due to the internal loop (aJ/x)* can still be comparable to Higgs 
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coupling to fermion-antifermion. A plot of the loop factor can be found in Ref. 1; 

it is a quantity of order unity. 

We use the couplings of Higgs to W and 2 pairs to estimate in Eq. C.23 the 

width of Higgs to W boson pairs. Since there is no loop integral or coupling 

constant suppression, decays into W pairs are the dominant decay mode for heavy 

Higgs. These considerations lead us to believe that the dominant production mech- 

anism for Higgs will be gluon-gluon fusion via a triangle graph. We can use Eq. C.ll 

to estimate the rate for that process using Eq. C.23 for the evaluation of the partial 

width of Higgs into two gluons. 

u(H) - [““,21: gg)] [2x1 In (-+)I L,, 

An exact calculation of the cross-section for various center-of-mass energy val- 

ues as a function of Higgs mass is shown in Fig. C.ll. The point at 2 TeV and 200 

GeV Higgs mass is a hand estimate. We have taken the loop integral I to be 1. The 

Higgs width to W pairs is about 2 GeV for 200 GeV Higgs and the partial width 

into gluon pairs is only about 1 MeV. The typical scale for Higgs is picobarns. 

t/i = 2TeV, M,y= 200 GeV 

J; = 0.1, l?H - 2 GeV, r(H -+ gg) - 1 MeV 

IyH + gg)/lw - 0.5 pb 

(C.25) 

The hand estimate appears to be quite close to the calculation. Note that even 

with a Tevatron Upgrade, which would have a luminosity of 5 x 10slcma/sec, or 

an integrated luminosity of 5 x 10s8cmz/run one would only create 100 Higgs of 

200 GeV mass in a year. Given branching ratios and detection efficiencies, this is 

obviously rather an elusive particle due to its weak coupling to ordinary matter. It 

is equally clear what the SSC advantage is; at 200 GeV for ME, the cross-section 

is -1000 times larger at the SSC than at the Tevatron. 
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Figure C.ll: Cross-section for Higgs boson production for various 4 values as a 
function of Higgs mass. The point 0 is a hand estimate for fi = 2 TeV. 

Another possible source for Higgs are the Ws radiated by the quarks in the 

proton. The estimate we make is very much in the spirit of two photon physics, 

using the W - W approximation i.e., e+e- -a e+e-7-y is like uf~ + drjW+W-. 

The kinematics is illustrated in Fig. C.12. 

A 

\ 

Figure C.12: WW radiation by IL% with subsequent fusion into a Higgs scalar. 

A crude estimate of the cross-section follows from our discussion of bremssttahlung 

in Section B. We assume collinear W’s since the process is analagous to the 
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bremsstrahlung of collinear photons. The distribution function is now pertur- 

batively calculable, i.e., f(z)dt in (a/?r)dt/z as in Eq. B.9. 

The joint probability of finding zl, ~2, zSr and zg is: 

du - C[d+,f(zl)draf(r,)] [dr~(Y~~)dr.(a~~~)~(M1)] 

7’ = z,+a = i/s 

z E z+, = M’/i (C.26) 

du +a C[dr’dyf(zl)f(ra)] (z)’ [ $L’dy”?(M2)] 

After integrating over “dy” (rather like dy -t Ay), and assuming small z we 

have: 

J 
dz”d ” Y 
- - [ 141/~)1/~ z 

(C.27) 

Then using Eq. C.6 in the narrow width approximation one can perform the inte- 

gration over z. 

($).=, - Cj [d+(JF;)f(J;;)] (z)’ [ l+/$$] (c.28) 

We still have to integrate over T’, 7 < 7’ < 1. If we take the valance distribu- 

tion, u”(z) for f(z), then an extremely approximate result is, 

- L,,[n2r/M] 
2(aw/4rr)’ In(;) 

J; 1 (C.29) 

Comparing to the previous result for gluon fusion we find a ratio: 
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PW(H) 
[ IL 
@ =p-q%)2 

HqH) - Lgg !!f (E$ 1 (C.30) 

Clearly, this latter mechanism will become important at higher T, since LUG/L,, 

increases with r so as to overcome the coupling constat ratio. NumericalIy 

Eq.C.30 is O(l)/(l - &)s, so the WW fusion mechanism dominates at large 

7. This mechanism is then the most important one near threshold. 

A very heavy Higgs becomes difficult to detect since the width given in Eq. C.23 

is increasing as the cube of the mass of the Higgs. The width is comparable to the 

mass for Riggs masses of about 1 TeV, which means that the weak interactions are 

becoming strong. This fact is the basis for the statement that some new physics will 

appear at the 1 TeV mass range. It also means that the Higgs will be undetectable 

if it is that heavy. We wiil have further comment on this subject in Section D after 

we have evaluated one of the backgrounds to a Higgs search. 

r - (w/M&) M3, r/M - 1 for (C.31) 

M - Mw/&i- 1 TeV 

Recently there has been a lot of discussion about possible modes of Upgrade 

for the Fermilab Collider. Three options that have been discussed are; pp at high 

luminosity at 2 TeV, $ip at 2 TeV which is what we have now, and upgrading to pp 

at 3 TeV center-of-mass energy. For pp obviously we would use Eq. C.15 to estimate 

production cross-sections of sequential neutral weak bosons (Z’s) via valance-sea 

whereas for ~JJ at the two possible energies we would use a valance-valance estimate 

(at very high masses the valance quarks are dominant). A plot of the 2’ production 

cross-section as a function of 2’ mass for the three different Upgrade options is 

shown in Fig.C.13. The smooth lines are exact calculations while the discrete 

points are the various hand estimates based on Eq. C.15 and the valance and sea 

distributions. It is clear that at very high masses the valance anti-quarks available 

in the anti-proton are crucial. For this particular kind of physics, the possible 

luminosity increase of proton-proton over the proton anti-proton option would 
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probabiy not overcome the cross-section advantage of the pp option. Another 

point is that if the energy is increased rather than the luminosity, then one need 

not upgrade the detectors. A detector upgrade would be an expensive proposition. 
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Figure 13: 2 production cross-section as a function of Z’ mass for pp at 2 TeV 
4 (- -) pp at 2 TeV (-) and pp at 3 TeV (- -). Hand estimates are also shown 
as points 0, 0, and v, respectively. 

This hand estimate for sequential Z’ production completes our discussion of 

proton anti-proton formation of well defined resonance states. We have looked 

at gluonic formation of vector mesons, quark anti-quark production of W and Z 

bosons, and estimates of gluon-gluon and W-W formation of Higgs scalars. In all 
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cases, we have been able to make a reasonable hand estimate of the cross-section 

level and the cross-section shape as a function of center-of-mass energy. In the 

case of the W and 2 bosons we have been able to look in detail at the I and pl 

distribution of the initial state Ws and the decay distributions. We can thus have 

some confidence that when we extrapolate to higher mass states like the Z’, our 

hand estimates will give us a reasonable expectation of what the discovery limits 

are. 

Finally, we finish this Section with estimates of typical cross-sections for the 

production of objects whose mass is near the discovery limit of the Tevatron. Using 

the formulae derived in this Section, the reader can make his own hand estimate 

for the relevant process. In this case, we pick a mass of 300 GeV. We use our 

generic formula for (du/dy) at y = 0 which we derived in Eq. C.9. This leads us 

to the generic estimate for the differential cross-section shown in Eq. C.32. 

r - “LPM, zj(z) s a( 1 - z)=zB (C.32) 

N 

For gluon fusion production of a state of mass M, the cross-section just based 

on a mass scale of 300 GeV is about 4.4 nanobarns. The coupling constant to that 

mass is of order the strong coupling constant, and if it were a vector particle then 

the differential cross-section at y = 0 wouid be about 3 nb for J; = 2 TeV. 

gg + M, 
1 

- = 
M= 

4.4 nb 

a. - 0.1, J = 1, J; = 0.15 

N 2.8 nb 

That cross-section would be a plausible estimate for say a strongly interacting 

n1 resonance if it were to exist at 300 GeV (with a top quark mass of -150 GeV). 

In the case of electroweak production of a 300 GeV mass, say by ut% annihilation, 

the differential cross-section at y = 0 is of order 1 nanobarn. Formulae to estimate 
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the total cross-section are shown in Eq. C.34 below: 

Such formulae can be used to estimate production rates of new particles which 

have strong or electroweak couplings. 

D. HADRON-HADRON SCATTERING IN THE POINTLIKE DOMAIN 

We now begin to examine the pointlike scattering observed in hadron-hadron 

colliders. The cross-section which we derived in Section C was the joint probability 

of getting a parton with momentum fraction I~ from hadron A and a parton with 

momentum fraction zz from hadron B. Initially, we are going to consider quark 

anti-quark annihilation into virtual photons of variable mass, which is called the 

Drell-Yan process. We get the equations seen below: 

= cf(v’V(J;)d~ 

= ; b(+bbL~; i4g) Q: 

(D.1) 

These equations are formally the same as Eq. C.5.b with a color factor of l/3 

for quarks instead of a color factor of l/8 for gluons. The source functions are the 

distribution function of up quarks in the proton and anti-up quarks in the anti- 

proton. This assumes that the process proceeds through EM coupling, so that Qu 

= 2/3 dominates. 

= F(T) 

= 2L,, (d&i) 
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Clearly the simplest prediction is that of scaling; that W times the differential 

cross-section (du/dM) is a function only of the scaling variable T. In addition, if we 

put in the pointlike cross-section (which we have already quoted in Eq. B.l) we get 

the numerical prediction shown below which goes beyond the scaling prediction: 

= ZL,, 
4d 1 1 TQi 

P.3) 

(fic)Zf.? = 2.1 x 10-32cm2 GeVZ = 21 nb GeV’ 

Since the proton is a broadband beam of partons containing all momenta, and 

since z1 and z2 specify the mass of the initial state, all possible masses of the virtual 

photon are excited simultaneously. Since the weight given to the partonic cross- 

section is ~9 times the square of the quark charge, effectively we are measuring 

only UC annihilation. Other quarks of one third charge contribute a correction 

factor of only about l/4. Data for dilepton production in pp and pp collisions is 

shown in Fig. D.l. This data was taken at a variety of center-of-mass energies and 

is shown as a function of the scaling variable J;. 
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Figure D.l: Dilepton data in pp and pp collisions. Hand estimates for SY and vv 
are plotted as @ and o, respectively. 

Note that the vertical scale is dimensionless. Since it is effectively the partonic 

cross-section its scale is a’. In fact, (hc)‘az is 21 nanobarn GeV’ which is a dimen- 

sionless number. It is gratifying to find that scaling works and that the vertical 

scale in the Drell-Yan data, at small J; where L,, is a number O(l), is of that 

order of magnitude. In more detail, one can use Eq. D.3 to make hand estimates 

of the Drell-Yan data. The two curves shown in Fig. D.l are valance-valance and 

valance-sea cross-sections. It is good to see that not only is the scaling behavior 
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predicted but that the size and shape of the scaling cross-section is consistent with 

the electromagnetic cross-section. Moreover, the detailed hand estimates come 

within factors of two of the actual data. At moderate T values the sea-valance and 

valance-valance cross-sections are sufficient. Obviousiy the peaking at very low 

values of T is the sea-sea contribution. 

The transverse momentum of the virtual photon y* can be found from that 

of the p+p- pair. We take it as a posteriori evidence for smail intrinsic trans- 

verse momentum that pl(p+p-) - A. At higher values of M(p+p-), initial state 

bremsstrahlung will also contribute to pL(p+p-). The measurements of Drell-Yan 

dimuons serve to confirm the assumptions we have already made. 

Emboldened by success one can try to use the Drell-Yan process to estimate 

pair production of gauge bosom. You recall from Section A that the non-Abelian 

nature of the gauge bosons resulted in triple gauge boson couplings. Electroweak 

unification meant that those couplings were of order a. Hence one can use the 

Drell-Yan mechanism at a threshold mass of twice the boson mass to look at pair 

production of Ws by virtual photons. Looked at another way the Drell-Yan virtual 

photon can decay into a W pair. This means that instead of uo annhilating into 

a virtual photon and then decaying into lepton pairs (which has a cross-section 

- azQ2/8) the virtual photon in this case couples with strength a in decaying into 

W pairs. We take the Drell-Yan cross-section at 2 TeV at a mass of twice the W 

mass, in which case J; is 0.08. The total cross-section is the differential cross- 

section integrated over all masses with a rapidity range Ay as we have already 

estimated for other processes. 

oww - /,,,, ($&J~“M(“y) 

cww - (&);;~Mw”y(~) 

The Drell-Yan cross-section (Fig. D.1) is about 10 nanobarn GeV* at twice the 

W mass. The rapidity interval is about 6. This leads us to a cross-section estimate 

for W pairs in the one picobarn range. 
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fi = 2 TeV, J?= 0.08 

- 10 nb GeV2 P.5) 

Ay - 6 

gww - 1.2 pb 

For a luminosity of 1031 cm* per second, assuming that there are xx lo7 seconds 

per year with an efficiency of one over r, in a one year run one would get 120 

produced W pairs. That means one and a half W pairs where both Ws decay into 

p plus neutrino. Obviously the study of boson pairs will be a feature of improved 

luminosity running in the Tevatron Collider in the future. Clearly, establishing the 

triple boson couplings shown in Fig. A.7 will be of crucial importance in validating 

the Standard Model. Note that the WW7 coupling (Fig. A.7) means that virtual 

W’ production (Fig. C.4) followed by the decay W’ --t Wy has a cross-section 

larger than that for WW. Because the mass of the Iv7 is less than a WW, one 

need not pay as large a I/M’ price, and the cross-section is larger. The biggest 

triple boson process then leads to W-y in the final state. 

We show in Fig. D.2 exact predictions for the cross-sections for W and 2 pairs 

as a function of center-of-mass energy. 
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Figure D.2: Predicted cross-section for WW and 22 pair production as a func- 
tion of 4. The point o is a hand estimate for 4 = 2 TeV. 

It is clear that the hand estimate we have made is sufficient to give us a plau- 

sible order-of-magnitude for the cross-section. It is also clear that near threshold 

(which means at large T), $ip production has a much larger cross-section than pp 

because at large T the valance quark contributions are important. This is per- 

haps another argument for using enhanced energy in pp collisions as opposed to 

enhanced luminosity in pp collisions in order to push the discovery threshold. 

Of course, as we discussed in Section C, another possible source of electroweak 

boson pairs comes from the decays of Higgs particles. Feynman diagrams for Drell- 

Yan dilepton production, Drell-Yan W pair production, and ,&on-gluon fusion 

production of Higgs with subsequent decay into W pairs are shown in Fig. D.3. The 

arguments for 2 pairs are somewhat different as we will mention later. Basically 

the processes are shown in Fig. B.4 for 99 f Q& if the initial and final states are 

reversed. The fermion exchange diagram leads to say, UC --t 22, while the boson 

annihilation diagram leads to say us + y* + W+W-, or uti -+ 2’ + W+W- 

(see Fig. A.7). Since the latter graph does not allow 2 pairs in the final state, it is 

not surprising that the cross-section for W pairs exceeds that for 2 pairs. 
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Figure D.3: a) Drell-Yan dilepton diagram. b) Drell-Yan $5’ pair diagram. 
c) Gluon-gluon fusion diagram for W pair production. 

For comparison the Drell-Yan production cross-section has already been eval- 

uated at a q’7 of 0.1. At that value we saw that we are dominated by valance- 

valance. We get a differential cross-section as a function of mass of 0.6 femtobarns 

pei GeV. In the case of the gluonic production of Higgs we’ve already evaluated 

(for 200 GeV Higgs) the total width into FV pairs to be 2 GeV. The width into 

gluon pairs is 1 MeV. Thus, the production cross-section is roughly 0.1 picobarn 

per GeV. 
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(d++fdy)?&oo - 0.6 fb/GeV 

M = 200 GeV 

rff - lY(H--t WW)-2 GeV -dM 

I’(H + gg) - 1 MeV - B,,dM 

(dc/dMdy);, - 0.1 pb/GeV 

P.6) 

As we will see later, WN’ production is probably dominated by heavy tt pairs. 

Still, let us compare WW events from Drell-Yan to those from Higgs, assuming 

B(H -+ WW) - l/2. Using our previous results, with dM N r: 

(du/dMdy)H 

(da/dMdy )DY CD.71 

Comparing the two Feynman diagrams in Fig. D.3, the ratio has a term of uz 

for Drell-Yan due to the coupling vs. the branching fraction into gluons due to 

the internal heavy quark anti-quark loop integral, (a811i)‘. There is also a term 

involving the ratio of the source terms of gluons to up quarks. Taking 11)’ - 

1, we get the ratio shown in Fig.D.4.a. Clearly H -t WW exceeds Drell-Yan 

backgrounds for MH z 1 TeV, with 4 = 2 TeV. However, as shown in Fig. D.4.b, 

the Higgs width, rx - 2r(H --t WW) - (+) [i (%)*I MH, is - MH at a 
mass of - 1.0 TeV. Thus the narrow width approximation is clearly not justified 

and in any case, with a width of 1 TeV, the concept of “resonance” is no longer 

valid. 

64 



100.0 9, r \ 

- 10.0 ‘1 

3 “r, 
3 ‘\ 

t? ‘x \ 
’ -1.0 

\ 
‘j; 

\ 

2 ‘b 

t: 

5: 

E 

i 

1.0 
F 4 .-- 

1 MI 
I .* 
5 0.1 ,-- 

d 

/’ 

0. 
4’ I I 

0.5 1.0 
MHCTeV) 

Figure D.4: a) Ratio of Drell-Yan to Higgs cross-sections. b) Higgs width as a 
function of Higgs mass. 

Another point to make is that there is another D-Y like contribution, rather like 

the Higgs graph (Fig. D.3.c) where gluon-gluon fusion into quarks forms a virtual 

7 which decays into W pairs. This graph, with respect to the classical D-Y graph 

is in the ratio 
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Obviously, looking at Eq. D.7, this higher order contribution to D-Y yields WW 

pairs which are of O(1) with respect to the Higgs. It is a good search strategy to 

look for a heavy Higgs decaying into gauge pairs if one has the luminosity available 

to actually observe those decays. Remember that the observable branching ratio 

of Ws and Zs into leptons is small, which makes the overall detection rate for 

Higgs rather small. This implies t,hat one needs a substantial luminosity increase 

in order to have a chance to observe these kinds of decays. 

We note that in W pairs D-Y is comparable to Higgs (especially in light of 

Eq.D.8) and we will soon see that top decay (if top is heavy) will dominate all 

sources of IV pairs. In Z pairs, photons and top do not contribute (see Fig. A.7). 

However, there is a contribution from qq + ZZ (see Fig. B.4) which we will 

evaluate in the discussion of heavy flavors (gg -+ QQ). The graph is responsible 

for the ZZ cross-section shown in Fig.D.2. Obviously if W pair backgrounds to 

Higgs from D-Y are substantial, 2 pair backgrounds from 49 are also. Finding the 

Higgs will be a formidable task. 

We now consider gluon-gluon scattering. The topic is then strong interactions 

and jets. You recall in Section B we wrote down the pointlike cross-section for gluon 

elastic scattering. It is slightly complicated because there are exchange peaks which 

are familiar from Rutherford scattering. That makes it a more complicated topic 

than the Drell-Yan formation process. We need to come to terms with the exchange 

peaks which give a diverging total cross-section. At 90” the coupling constants and 

Feynman diagrams are such that glum-gluon elastic scattering dominates other 

processes. The gluon source at most accessible values of Feynman 5 is also the 

largest source. This means that we can consider in most cases that jet phenomena 

come exclusively from gluon elastic scattering. The special case of the elastic 

differential cross-section at 90’ is given below. 
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On the other hand, at 0” the exchange piece gives a one over t^’ behavior which 

dominates. We then have a differential cross-section which is very similar, except 

for numerical constants, to Eq. B.2 for Rutherford scattering. 

i - 00, if- 0, &- -; (D.10) 

db- 9na; 

dt 2t’l 

What evidence do we have that we are indeed seeing Rutherford like scattering 

in jet production? If one measures the jet angles and momenta by calorimetry, 

those kinematic variables are sufficient to define the Feynman x of the dijet system 

and its invariant mass. The transverse momentum tells you the scattering angle as 

we derived in Eqs. B.16 and B.17. This is experimentally how you determine the 

p&on-p&on scattering angle. A convenient variable for two-body Rutherford 

like scattering is x, which is defined below: 

1 + cos i 
x E i ) l-ccosi 

= (&/“) = COP (i/2) 

t - (1 -cos@ 

di - d(cosi) 

dX/dcos 8 - l/i” 

(D.11) 

d& 
&” 

- const 

Note that we simply assert that the outgoing two gluon state is identified as a 

dijet state. We do not yet discuss how this is accomplished. The fragmentation 

of partons into jets of hadrons is discussed only later in Section E. As we show 

in Eq. D.ll, the differential cross-section for partonic scattering as a function of 

x is constant if we have Rutherford like behavior. Data from the CERN collider 

on the angular distribution of dijet events as a function of the variable of x is 
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shown in Fig.D.5. Obviously the basic behavior is that the distribution is flat 

in x, which as we have said, indicates Rutherford like partonic scattering. More 

detailed exact calculations give you a better fit to the data. The mostly uniform 

distribution in x seems to confirm that we have two body scattering. However, the 

data only extends to scattering angles cos f? < - 0.5 due to the experimental problem 

of resolving the jets from the beam fragments. 
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Figure D.5: Angular distribution for 2 jet events as a function of x. 

What about the full structure of a dijet event? The initial state, its mass, and 

longitudinal momentum are determined by the Feynman x values of the incident 

partons. The orientation of the jets in the final state is defined by the third variable, 

the p&on-p&on scattering angle. Modifying Eq.D.2 for the color factors and 

sauces associated with gluons we can write down the triply differential cross- 

section for jet production as in Eq. D.12: 
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(D.12) 

We have assumed that there is no transverse momentum due to the partons; 

it is all due to the two-body scattering process. This assumption implies that 

jets are back to back in azimuth. If we want to specialize to doubly differential 

cross-sections, (specifically at y = 0), we need to integrate over the unobserved 

variable. There is a minor technical difficulty in that, in distinction to say Drell- 

Yan processes without exchange peaks; the integral diverges. This is not a surprise; 

it is the same divergence which shows up in Rutherford scattering and one merely 

has to cut it off. One can do that by defining a minimum scattering angle for which 

you can observe jets. That minimum angle happens because there is a minimum 

transverse momentum for which jets are operationally observable amid the debris 

of the proton and antiproton fragments. Doing the integral implied in Fig. B.4 

and Eq. D.12 exactly: 

M3 (du/dMdy)y=, = 2L,, (~)-[~][1+~(1--22_.-l)l(D.13) 

.&in E cos imin = Jl - (2p’;‘“/M)Z 

If we just ignore the problem of defining the minimum transverse momentum, 

numerically it turns out that we can use the differential scattering cross-section 

at 90’. This assumption is numerically within 85% of the full integral if we set 

Z,,,i,, = 0 in our definition of the minimum transverse momentum. 

M3(du/dMdy),=, - 2L,, [dkggi] (D.14) 
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Given the uncertainties in the gluon distributions themselves, their evolution, 

the value of 4’ at which the running coupling constant should be evaluated, and 

other uncertainties, the theoretical quantities are not well defined to within factors 

5 2. That being the case, we might as well just make a rough estimate as in 

Eq. D.14 and see how well this hand estimate compares with the data itseif. Data 

on the invariant mass and transverse momentum distributions of 2 jet events from 

the CERN Collider are shown in Fig. D.6. 
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Figure D.6: Invariant mass and p 1 distributions of 2 jet events from UA2. Hand 
estimates are shown as 0 points. Both jets have lyI < 0.85. 

The jet distribution figure illustrates the reasons why we have adopted a simple 

minded approach which ignores evolution of f(z) and “running” of a*. There 

exists an order of magnitude uncertainty in “exact” cross-section estimates. These 

unknowns make hand estimates as accurate as anything, and lead us to mentally 

assign large errors to any “exact” calculation. 

The hand estimates that are made using Eq. D.14 are also shown in the figures. 

At a center-of-mass energy of 540 GeV we took a strong coupling constant a, equal 
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to 0.15. Looking at Fig.D.6, we see that the hand estimates are in reasonable 

agreement with the data. It is worth noting that without the (1 - &‘I2 gluon 

factor we would just have l/M3 for the differential cross-section as a function 

of jet-jet mass. A mass of 250 GeV would have a cross-section three orders of 

magnitude higher, so in fact the gluon distributions are very important. Note that 

in this data from UA2, both jets are required to come out at wide angles. This is 

equivalent to a cut on the minimum transverse momentum. 

Turning to the doubly differential cross-section for jets as a function of rapidity 

and transverse momentum, we need to integrate over the invariant mass of the dijet 

system. The relationship between transverse momentum, mass, and scattering 

angle is given below: 

M = (Zp,)/sinB 

(d~/dp~dy),=o = / dM[d~/dMdp~dyl,=o 

(D.15) 

Integrating over the dijet mass we again have divergences associated with the 

t channel and u channel exchange peaks. We find that, ignoring those divergences 

and setting Zmin = 0, we can set the transverse momentum equal to half the 

invariant mass. We then use our results as found in D.14 along with the relationship 

appropriate at the Jacobean peak. The differential cross-section for dijets as a 

function of the transverse momentum of one of the jets can be exactly integrated 

for cutoff zmin: 

- 2L9,(T) [(4-k) -4 ln(l-Z,i,)] 

- M3 _ O/14), ~1 = M/2 (D.16) 
Y-O 

As we see, from looking at Fig. D.6, this expression is a reasonable representation 

of the CERN collider data on the transverse momentum of dijet events; it is just 

the mass distribution scaled down by a factor of 2, pl N M/2. 

What about scaling behavior as a function of pp center-of-mass energy? Look- 

ing at Eq. D.14 we expect that the cube of the mass times the differential cross- 

section should be a function of the scaling variable 7 only. The Jacobean peak 
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relation between transverse momentum and invariant mass can also be used with 

pi distributions. I is defined in Fig. D.7. 

= F(J;) 

(D.17) 

- (1 - 2P1/vw 

The invariant scaled cross-section is shown in Fig. D.7 along with Collider data. 

The relationship of D.17 to (I) is p raven only later in Section E. Clearly scaling 

holds, and both the shape and the absolute magnitude are adequately represented 

by the hand estimate. Note that (tic)’ = 4 x 10’ nb . GeV’, so that the vertical 

scale is indeed dimensionless and of order ~a3 (with a. = 0.2). Note also the 

divergence of the data at low pl with respect to the hand estimates. This effect 

(due to gl uon evolution) is discussed later. 
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Figure D.7: Scaling of jet data from 4 = 0.063 TeV to fi = 1.8 TeV. Hand 
estimates are shown as 0 points. 

Indeed, the data are in reasonable agreement with the scaling prediction. This 

means that not only do we observe scaling of jet production as a function of center- 

of-mass energy, but that the functional form of that scaling can be gotten using 

the gluon distributions. Note that the transverse momenta only go out to about 

200 GeV for the Tevatron data, which means that the masses go out to about 400 
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GeV or x values of about 0.2. As we know from looking at the source distributions 

(see Fig. B.9), this data is in the regime where the gluon sources dominate. Since 

in addition we know that the gluon-gluon cross-section is much larger than the 

quark anti-quark cross-section, this is a posteriori justification for the assumption 

that the dijet data is dominated by gluon-gluon scattering. 

Thus far we appear to have successfully estimated the mass and transverse 

momentum distribution of dijet events, the angular distributions, and the center- 

of-mass energy scaling behavior. We can also ask about the “low” transverse 

momentum cross-section. Looking at Eq. D.16, under the approximation that we’re 

dominated by transverse momenta near the Jacobean peak we expect the doubly 

differential cross-section as a function of the square of the transverse momentum to 

go like one over the transverse momentum to the fourth power times some scaling 

function. Obviously that transverse momentum to the fourth power is a residual 

reflection of the underlying Rutherford scattering process. 

(D.18) 

At fixed transverse momentum as the center-of-mass energy increases, the x 

value of the gluon source decreases. Therefore the cross-section at fixed transverse 

momentum rises very rapidly because the gluon source distribution rises rapidly 

with x. At low transverse momenta we take the strong fine structure constant, CI., 

to be 0.5 since we are at a lower q* value. If the scale of transverse momenta is a few 

GeV, the cross-section is mb. This is, of course, the same order-of-magnitude as the 

total inelastic cross-section, which means that at very high center-of-mass energies 

we expect substantial contributions to the total cross-section due to minijets with 

transverse momenta of the order of a few GeV. 
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In fact, this is just what is observed. In Fig.D.8 we show the inclusive jet 

cross-section as a function of transverse momentum for low transverse momentum 

jets. As shown in the figure, those jets dominate over the single particle data. We 

also make a hand estimate at low transverse momentum using Eq. D.19. At least 

on the scale of 20 GeV and above it is a reasonable ballpark estimate of the actual 

data. A complete calculation is shown as the smooth curve in Fig. D.8. The total 

cross-section for jets above say 3 GeV transverse momentum is predicted to be 

of order 20 mb at the Fermilab Collider. This means that jets are comparable to 

the total inelastic cross-section. Note that, as before, our hand estimate (which 

ignores evolution) falls below the data at low pl, 

INCLUSIVE JET 

CROSS SECTION 

Figure D.8: Jet distributions from UAl for low pl. Also indicated are a QCD 
calculation (-), single particle data (0) and a hand estimate (a). 

A propos of the rising cross-section for jets at fixed transverse momentum 
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as a function of center-of-mass energy, we should note that we have assumed a 

particular form for the gluon distribution. This choice of form was guided by 

classical bremsstrahlung in that the momentum distribution for gluons at low z 

approaches a constant. That is certainly true in lowest order, but as you recall the 

gluon distributions evolve through various radiative and pair production processes. 

In general, that evolution will tend to reduce all the distributions at high z and 

have them pile up (due to radiative processes) at low z. For example, we derived 

the form shown in Eq. B.ll, rg(z) N exp dln 1 k91~ which diverges as 2: + 0. If 

the gluon number distribution diverges as z approaches 0 faster than one over z, 

the minijet distribution at fixed transverse momentum rises rapidly with s. 

zg(z) = ;(l- z)6exp[a.b ln(z,,/z)] 

(D.20) 

” e[2-.b ++)] 

Some authors call this the “gluon bomb,” which means that the singular gluon 

distribution causes the minijet cross-section to rise very quickly with the center- 

of-mass energy. It will be interesting to see (at higher energy colliders) exactly 

what the center-of-mass energy dependence of low pl jets is. The fact that the 

cross-section might violate the Foissiart bound means that our assumptions based 

on the impulse approximation are breaking down. 

Let us now look at a process of which is related to dijet production, the pro- 

duction of prompt photons. The Feynman diagrams for this process have already 

been shown in Fig. B.4. Recall that they have fermion propagators, the annihi- 

lation piece behaving as one over i and the exchange:piece going as one over 2. 

Compared to the jet cross-section, we have a 2 --t 2 process in both cases. For the 

jets we have an amplitude squared which has an LI. term at each vertex, whereas 

for the prompt photons we have an a. at the gluon vertex and an a times the 

square of the quark charge at the photon vertex. Ignoring the other differences in 

the 2 + 2 process cross-sections, and just counting coupling constants and source 

functions we get a rough prediction for the prompt photon to dijet cross-section. 
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UJy/bJJ - [!G] [2@] = [e$] [+s] 

We again assume that the quark distribution is dominated by the up quarks 

because we have a quark charge squared factor that favors them. At low pl, we 

are operating in the small 7 region where we expect the sea to dominate even in 

pp collisions. That assumption leads to the estimate shown below: 

a, - 0.2, G(z) sea (D.22) 

u+/bJJ - 9.2 x 1o-4 1 - $ a [ 1 
Data from the CERN collider on the differential cross-section as a function of 

transverse momentum for jets and prompt photons is shown in Fig. D .9. The hand 

estimate points come from Eq. D.22, using the measured jet distribution to scale 

down to the prompt photons. Clearly this relative scaling works out rather well 

and gives us confidence that our hand estimates will give us a reasonable estimation 

of the prompt photon cross-section. 
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Figure D.9: Data from UA2 comparing pl distributions of jets and single 
prompt photons. Hand estimates are shown as o points. 

There is a further point to be extracted from the data when we look at the 

angular distributions of the 2 + 2 processes. For a vector boson propagator we 

have an amplitude going like one over the momentum transfer squared, whereas for 

fermion propagator we get a dependence for the amplitude which goes like one over 

the momentum transfer. This means that the differential cross-section goes like 

one over iz or one over i in the case of vector and spin or propagators respectively. 
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The angular distribution in the two cases is, in fact, different which is something 

we ignored in comparing the cross-sections. 

A - l/2, ‘4 - l/(B +m) 
d& - l/P, - l/i (D.23) 

d&w+ 1ds.u - (1 -cosi) 

CERN Collider data on the ratio of the angular distributionis shown in Fig. D.lO. 

The smooth curve is an exact calculation whereas the hand estimate is the dotted 

curve which is simply a linear dependence on the cosine of the scattering angle. 

Note that the data does not extend down to small i because of the problem of 

identifying the jet in the beam direction. Obviously this data gives us extra confi- 

dence that we understand in some detail the 2 -+ 2 processes, which are different 

in the case of jets and prompt photons. 

Figure D.lO: Data from UA2 comparing the angular distributions of photons and 
jets. Hand estimates are shown as the (---) curve. 

Another use of the jet distribution is to set limits on possible substructure of 

the partons. To begin, we make the observation that at 2 TeV a mass of 200 GeV 

for the dijet system implies an x value for the partons of 0.1. That means that 

we are dominated by gluons as a source distribution. We note that the present 
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Tevatron luminosity is such that we cannot yet study quark jets, because the 

maximum accessible x value for the partons is too low to be in a regime where 

quark jets dominate. When one gets to higher luminosity, one can vary the x value 

and study possible changes of jet composition as a function of x. That will be a 

more interesting and extensive data set. In the meantime, we know that pointlike 

elastic scattering gives us a transverse momentum distribution that goes like one 

over p: for Rutherford like scattering modified by a factor indicating the partonic 

distribution functions. 

dr -N 
dpl 

$I- 2PdvT (D.24) 

In Fig.D.ll we show CERN Collider data on the transverse momentum dis- 

tribution of jets at the highest available values of ~1. Hand estimate points come 

from taking the data point at 50 GeV transverse momentum as a normalization 

point and using Eq.D.24 to scale to the highest values from that point. Clearly 

they are in reasonable agreement with the actual data. The smooth curves are 

the result of an exact calculation for a composite scale for which the quarks have 

substructure. Obviously if the quarks have substructure then it is Rutherford scat- 

tering all over again. The cross-section at a fixed transverse momentum will be 

larger than that expected if there were no substructure. It is clear from this data, 

that that composite scale has a lower limit of a few hundred GeV. Subsequent 

Tevatron data will push up this limit. 
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Figure D.ll: UA2 data on high pl jet distributions. Hand estimates normalized 
to pI = 50 GeV are shown as 0 points. Smooth curves are composite calculations. 

The dijets are the jet topologies with the most copious rate. However, other 

topologies are easily observed. For example, in Fig. D.12 we have a three jet event 

from UAI with a total transverse energy of 200 GeV. If one remembers two to 

three processes, the bremsstrahlung cross-section is down by a factor something 

like a, with respect to the 2 -+ 2 process. However, CY. is a quantity of order 0.1, 

so the three jet to two jet cross-section is finite and a reasonably large number. In 

fact, one can try to make estimates and extract CY~ from that ratio. The number 

one gets is comparable to that which one gets in looking at W plus jet topologies 

versus W without jet activity. However, in the latter case the systematics on the Q. 

determination are better. An additional point to make is that multijet events are 

experimentally common, but are not well understood theoretically. It is important 

to have as complete a theoretical treatment of these events as possible to confront 

the data. 
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Figure D.12: Lego plot of a 3 jet event from UAl. Total ET is - 200 GeV. 

As a final topic for this Section we will consider heavy flavor production. The 

topic is open heavy flavor production, whereas in Section C we considered hidden 

heavy flavor production. In Section B we already tabulated the cross-section for 

gluon fusion production. There are two Feynman diagrams. One is annihilation 

into a gluon propagator which gives a one over B* piece. The other one is the 

gluon fusion mechanism with exchanged heavy quark giving us a one over i or one 

over ii piece. The cross-section for quark anti-quark pairs far above threshold is 

two orders-of-magnitude smaller than that for the elastic scattering of gluons off 

gluons (at i = 90”). This fact has implications for heavy flavor production when 

considering competitive 2 + 3 processes. 
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- = 2L,,[Ay] [d&.Li] /M3 
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(D.25) 

UQQ - %&I [d=l /(2)(2hfQ)2 

(d&i) 2 7(7/18) 

We will adapt our results for the dijet differential cross-section as a function of 

mass. We further assume that the cross-section at threshold rises very steeply to 

its value when i >> 2Mq. We then integrate over all masses above threshold to 

get the total quark anti-quark cross-section. In order to avoid exchange peaks, we 

assume that the partonic differential cross-section is just the cross-section at 90’ 

far above threshold as we did in the jet case. Since we have been making some 

rather rash approximations, we expect the cross-section will only be good to an 

order of magnitude. Looking at Eq. D.25, we can see that if the T value is small 

(so that the gluonic source functions are effectively constant), the cross-section for 

quark anti-quark just goes like one over the quark mass squared. 

UQQ N l/M; at small J; 

(D.26) 

J; - ~MQ/& 

Predictions for heavy flavor production as a function of center-of-mass energy 

are shown in Fig.D.13. Also included in that figure are charm quark data and 

data on beauty particle production from both UAl and a lower energy fixed-target 

experiment. 
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Figure D.13: Heavy flavor production as a function of fi. Charm data at ,/Z < 
100 GeV are from Fixed-Target or ISR expcrimeuts. Beauty data come from UAl 
and WA78 Hand estimates of bD are given as 0 points, while those for BB are 
scaled from the exact bD calculation and are given as G points. 

For comparison to the exact calculations (shown by the smooth curves) we 

have made hand estimates of charm particle production using Eq. D.25. We have 

previously commented on the crude approximations. These hand estimates are 
. * 

surpnsmgly close to the data and to the exact prediction. This fact gives us some 

confidence in what we have done to obtain the hand estimate. In order to get 

hand estimates for the BB system we took the exact DD calculation and made a 

relative scaling using the formulae giving in Eq. D.25. This procedure yields points 

quite close to the data points. We can reproduce the sharp threshold behavior that 

we see for the Bi? cross-section in a simple way. Clearly at the Tevatron Collider 

light quarks such as c and b have low T values and so scale like one over Ms as one 

naively expects. At the Tevatrou Collider, where the square root of r is 0.0015 

and 0.005 for Ds and Bs respectively, the cross-section is quite substantial. It is 
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about 300 microbarns for Ds and about 30 microbarns for Bs. 

&=2TeV cDb - 300 pb (D.27) 

CBE - 30 pb 

Although the simple picture appears to be verified by data, and appears to be 

easy to hand estimate, there are some fine points in heavy quark production. As 

we see in Fig. D.14 for DD production, incident pions appear to be more efficient 

for making Db at low center-of-mass energy than incident protons. 
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Figure D.14: D/D production in rp and pp interactions as a function of zf or p 
momentum. 

In fact, the partonic cross-section at 90” for light quark anti-quark annihilation 

into heavy quark anti-quark, relative to the cross-section for gluons fusing into 

heavy quark anti-quark has a ratio of order one. Thus at high mass (or large r), 

i.e. near threshold, since the partonic cross-sections are comparable, the quark 

source functions will dominate over the gluon source functions. In that case, since 

the pions have valance anti-quarks to annihilate, whereas the protons require sea 
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anti-quarks, we expect the pions will be more efficient in making charm particle 

pairs. 

we + QQ) 4/g 
d&(gg + Q&) = 3/8(7/18) 

- 3.0 

2 > 0.3 - &-2Mq/+ (D.28) 

2 Tel’ = ,h,MQ > 300 GeV 

At a center-of-mass energy of 2 TeV, the point where quark sources become 

important relative to gluon sources corresponds to masses of the heavy quark above 

300 GeV. This fact is again an argument for pp vs. pp colliders. 

There are other soft processes which are not calculated in perturbative &CD. 

In Fig. D.15 we show a schematic quark diagram for leading particie effects where 

a proton fragments into a proton, neutron, A’, or AZ 

IJ u 

d d 

1 
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Figure D.15: Quark diagram for leading particle effects in p + p, n, As, and A:. 

We know that for a proton fragmenting into a proton or neutron, the average 

x value (or the average inelasticity) in the event is about a half. That being the 

case you might expect to pick up a CC out of the sea of hadronic junk and find 

a fast forward Al. Data on this process are not without some controversy. Data 

from the ISR at CERN on the x distribution of the A,’ are shown in Fig.D.16. 

Note that the scale for the differential cross-section is several hundred microbarns, 

which means that the cross-section for A: at the ISR for leading particles is at 
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least 100 microbarns. The size of the total charm cross-section then clashes with 

the cross-section estimates for DD which we saw back in Fig. D.13. 
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Figure D.16: CERN ISR data on the x distribution of A,+ baryons for I > 6.3. 

Either this data is not correct or we need to take the soft leading particle effects 

into account. Since this topic is rather far atield for us, and since we have avoided 

all ’ Ins” physics so far, we will now drop the subject. 

So far in heavy flavors we’ve only talked about 2 + 2 processes. In fact, 

there are competitive 2 -+ 3 processes. For example, as seen in Fig. D.17, one can 

compare fusion to a diagram for gluon-gluon scattering followed by virtual gluon 

decay into a QQ pair. 
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Figure D.17: Feynman diagrams for QQ production in a 2 t 2 “fusion” process 
and in a 2 -+ 3 “gluon splitting” process. 

The differential cross-section for gluon elastic scattering vs. gluon fusion into 

quark anti-quark pair at 90’ is given in Eq.D.25. The ratio is about a factor of 

200. Hence, the 2 -+ 3 process where an elastically scattered gluon can virtually 

disassociate into quark anti-quark pair leading to a three particle final state, is 

competitive with the 2 -+ 2 process because the coupling constant a. is not over- 

whelmingly small relative to the 2 -+ 2 cross-section (see Eq. B.9). Note that aside 

from kinematic factors, all heavy quarks are produced equally because gluons are 

flavor blind. 

&?7 --+ QQg) wss -+ 99) 
“(99 -t (-32) - d&h ---t QQ) 

(D.29) 

This means, of course, that in evaluating the charm quark mass, which is a 

parameter in these calculations, one needs to take all the competitive processes 

into account. In Fig.D.18 there are a set of curves shown for the charm cross- 

section as a function of center-of-mass energy. For different values of the charm 

quark mass one assumes that only 2 4 2 processes contribute. It is obvious that 
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the data, in the context of a 2 -+ 2 theory, force you to a low value for the charm 

quark mass. 

Figure D.18: Dependence of o(Db) as a function of 4 on the parameter wt. for 
2 -e 2 processes only. The curves labelled a, b, and c refer to m. = 1.2, 1.5, and 
1.8 GeV, respectively. 

What we mean by low is low relative to say, half the + mass, which would 

lead you to believe that the charm quark has an effective mass of about one and 

a half GeV. But of course this is entirely spurious because that low value of the 

charm quark mass comes about by ignoring 2 -+ 3 processes in the calculation. 

When they are included, the rising of the cross-section due to the addition of those 

processes drives up the mass to a value which is compatible with the 1.5 GeV 

that one expects from spectroscopy. Independent evidence for the existence of this 

2 -+ 3 process will be given in Section E. 

One should make a comment about the relative scales of some of the different 

processes discussed in Sections C and D. The reason we talked about Ws going into 

lepton plus neutrino or 2 going into dilepton was that the major branching ratio 

for W decays, W into cs or ud, have enormous backgrounds due to dijets at the W 
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and 2 mass which bury the W cross-section by roughly two orders of magnitude. 

One way to reduce this background is to use some sort of vertex detection scheme 

to find secondary vertices and identify the fact that there are heavy flavors in the 

jet which decay weakly. Using our previous estimates for heavy flavor production, 

we can estimate the l/M3 tail of the gluon fusion mechanism. For b& pairs it is 

about 6 nanobarns per GeV for a mass of the b6 system of 100 GeV. 

WQQ) 
dM 

- l/M’, M >> Mp 

W -+ cs, ud background 

d4QQ) 
dM .-., dQ@(8M;)/M3 

- 6 nbJGeV 

uwjrw - 0.7 nb/GeV 

(D.30) 

This rate should be compared to the cross-section divided by the total W width 

which is still something like an order-of-magnitude smaller. Hence, even if one can 

achieve a mass resolution for dijets which is equal to the W natural width, and if 

one can cleanly detect D’s in the final state, one is still buried by heavy flavors at 

the W mass by an order of magnitude. At this time, W’s and Z’s have only been 

definitively seen in leptonic final states. 

There is at least one quark which is still to be discovered, the top quark. If 

Mt < Mw, then it confuses the limit on the number of light neturinos. A direct 

measure of Vh would inform on the three generation unitarity of the KM matrix 

(see Fig. A.4). A measurement of Mz/Mw limits Mt from being too large, s 

300 GeV, (radiative corrections). Direct limits require Mt 2 45 GeV. Recently, as 

we will discuss in Section E, large B/B mixing has been observed. As shown in 

Fig. D.19 large mixing means large Mt (propagator effect) or large V&, (generalized 

GIM cancellation mechanism). If we knew Vh (i.e. b + u decays) we could choose 

between the two effects. Note that, in an exactly similar fashion, before charm 

was found its mass was limited theoretically to 5 1.5 GeV because otherwise the 

Ifs - Kr. mass difference would be too large. 
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Figure: D.19: Box diagram for B - B mixing. 

If the top quark is heavy (M, > Mw) then it decays into Q -+ Wq. As 

we show below, a quark with A&J = 120 GeV is produced at the Tevatron with 

o(Qa) = 20 pb. By comparison, Fig.D.2, uDY(WW) N 8 pb. The Higgs cross- 

section, u”(WW) - 0.2 pb, is smaller yet again. It is observable (Fig. D.4) because 

its width is small, so that (dg/r)g:, >> (dc/dM)f&. Thus the biggest source 

of W pairs is a heavy top quark. For example, a Tevatron run with integrated 

luminosity of 10 pb-’ will yield 200 tK pairs (120 GeV top mass), or 200 WW 

pairs, or five events with ,ne and large missing transverse momentum. 

What about the cross-section for very heavy quarks, a super heavy top or a 

forth generation. The predictions shown in Fig. D.20 are an exact calculation of 

heavy quark production as a function of the quark mass. Predictions at three 

different center-of-mass energies relevant to the CERN Collider and the Tevatron 

Collider at two different energies are shown. Also shown are hand estimates for a 

center-of-mass energy of 2 TeV which were calculated using Eq. D.25. It looks as 

if those estimates are within an order of magnitude of the exact calculation over 

most of the range of the plot. The estimate assumes gluon sources. We don’t 

expect quark sources to be important until we get into the valance regime where x 

is say greater than 0.3, or a quark of mass greater than 300 GeV. Note that at 120 
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GeV quark mass, Fermilab has a 100 fold advantage over CERN in cross-section. 

It seems unlikely that such a factor can be compensated for by luminosity. 

b lo-’ 

10-2 

6’ 

m Q (GeV/c’) 
Figure D.20: Heavy flavor production cross-section as a function of quark mass. 
At 4 = 0.63 TeV (-), 1.8 TeV (- - -) and 2.0 TeV (- . - . - . -). Hand 
estimates for 2.0 TeV are shown as 0 points. 

This brings our discussion in Section D to an end. In this Section, we have 

looked at Drell-Yan production of lepton pairs and, by extension, production of 

gauge boson pairs. We compared that to Higgs production and decay to boson 

pairs. The bulk of the Section was spent on jets; their angular distributions, their 

mass and transverse momentum distributions, their scaling properties at different 

center-of-mass energies, their low transverse momentum minijet cross-section, and 

whether the &on bomb explodes at higher center-of-mass energies. We predicted 

the dijet to jet-direct photon ratio which tells us about the coupling constant and 

source distribution. We compared the angular distributions, which tells us about 

the elementary propagators for the two processes. Finally, heavy flavor production 

was looked at. It indicated the existence of 2 + 3 processes. Heavy flavors also 

act as backgrounds to other processes such as W and Z production. In all cases, 

we were able to make a plausible hand estimate for the process. 
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E. HADRON DECAY KINEMATICS AND POINT PARTICLE 
FRAGMENTATION 

So far we have been talking about wonderful things like partons; quarks and 

gluons. It is the nasty little secret of particle physics that the asymptotic states 

in the real world don’t contain any of these objects but consist of color singlet 

hadrons or leptons. In fact, theoretically it is not at all clear how to write down 

a consistent field theory without referring to the asymptotically free states-as in 

the definition of the S matrix. Experimentally, we have to come to terms with the 

fact that our quarks and gluons, which are colored, fragment into hadrons before 

they appear to us. We need to be able to relate the jets of hadronic debris to the 

final state gluons and quarks which are unobservable. 

First let’s just think about a simplified decay kinematics. We already did two- 

body decay kinematics where we said that the Jacobean peak was such that the 

transverse momentum of any jet was half of the dijet mass. Now we have to worry 

about the jet break up into hadrons. We can think of this as an n body decay 

with a small transverse momentum (ql - A) with respect to the jet axis. The 

kinematics for this process is shown in Fig. E.l. 

93 



’ n 

PI -?.I/2 

kl - ?I /n 

k - P/n 

m - M/n 

Figure E.l: Jet kinematics for fragments. 

The fragments have a limited transverse momentum, 41, with respect to the 

jet axis and we assume that they share the jet momentum roughly equally. This 

means that the angle of the fragment with respect to the jet axis is small and the 

mass of any pair of hadrons between the two jets is the dijet mass divided by the 

number of fragments. 

This simple picture has some immediate consequences if you think about the 

kinematics. For example, you might ask, why didn’t people see jets a long time 

ago? The answer is fairly simple. The transverse momentum which is intrinsic to 

the fragmentation processes is qL - A (when cz# becomes - 1) or qL about 500 

MeV, which is a typical transverse momentum in a soft hadronic interaction. If 

we would like the two jets to be contained within cones of half angle of 10” (45’) 

so that the jets take up 40' (180') out of the total phase space, then they will 

(not) be observable. The momentum of the fragment, if the jet fragments into five 

particles, is 2.8 (0.5) GeV. The jet has a transverse momentum of 14 (2.5) GeV. If 

the jet comes from a parton with x value of 0.2 then we need 70 GeV on 70 GeV 
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in the center-of-mass. This situation would only begin to obtain at a 10 (0.3) TeV 

Fixed-Target experiment. 

QI - 0.5 GeV 

6 5 ilO0 (450) 

k - 2.8 (0.5) GeV, n = 5 

P - pi - 14 (2.5) GeV 

< + >- 0.2 + &‘- 70 (12.5) GeV 

4 = 140 (25) GeV, PO = 10 (0.3) TeV 

(E.1) 

What that kind of argument tells you is that at a Fixed-Target machine the 

jets will be overlapping. They will not stand out as distinct from the fragments 

of the initial hadrons just on a kinematic basis. In hadronic machines we need to 

go to the CERN or Fermilab Collider for jets stand out as obvious objects. These 

arguments are confirmed by the data sets gathered at Fixed-Target and Collider 

experiments. 

As an example of three-body decays we can consider the semi-leptonic decays 

of B mesons. Typical values of the transverse momentum of the lepton will then 

be a third of the quark mass. The maximum value of the momentum of the lepton 

comes when it recoils against the light quark and the neutrino in a quasi two-body 

decay. 

<Pl> - MQ/3 WI 

(Plhna. - J&?/2 

This simple kinematic statement has some implication for determining the el- 

ements of the KM matrix. The maximum value of transverse momentum in semi- 

leptonic decay for an allowed b to c transition is smaller than that of a b to u 

transition. In particular, (P~)~., for b --f u is half the quark mass of 2 I/2 GeV. 

The b to c transition cannot provide a lepton with that transverse momentum. The 

data shows that there is no evidence in semi-leptonic decays for b -+ u transitions. 

Data from e+e- collisions for the semi-leptonic decay distributions of leptons is 

shown in Fig. E.2. In that figure, the b + u curve cuts off at 2 GeV transverse 
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momentum because b -+ c + p + Y has that value as its kinematic limit. The ratio 

V&&a is N 6’ (see Fig. A.4), so that a definitive measurement of I&, would test 

three generation unitarity of the KM matrix. As yet, this kinematic technique has 

only set lower limits on Vh. 

,AOE : 

-.- :atnyouna 
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PI IGIV/CI lthrust amsl 

Figure E.2: Inclusive muon pi distribution in e+e- collisions with contributions 
kom semileptonic decay distributions for b -+ cpv, c -P S~V plotted separately. 

Turning to proton anti-proton collider data, in Fig.E.3 we show the muon 

transverse momentum relative to the jet axis for semi-leptonic decays of particles 

in jets. Using those distributions one can estimate the relative contributions of c 

and b quarks to the inclusive muon spectrum. Obviously the heavier quarks throw 

the muons off the axis of the jet and make them more isolated from the decay 

jet. That isolation is one of the ways that the cross-section for BB was measured 

in our discussion in Section D of the cross-section for heavy quarks as a function 
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of energy. Obviously heavier quarks will lead to larger transverse momenta with 

respect to the jet axis in semileptonic decays. That fact is part of the basis for top 

searches and general searches for fourth generation heavy quarks. 
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Figure E.3: UAl data on muon pl relative to jet axis for q’ -+ qpv decays. 

So much for the leptons in the jet, what about the fragmentation of the jet into 

the light particles which form the bulk of the jet multiplicity? In Fig. E.4, we show 

collider data on the multiplicity in a jet as a function of the dijet mass. What we 

find out is that the jet multiplicity grows logarithmically with the dijet invariant 

mass. 
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Figure E.4: Collider data on fragmentation multiplicity as a function of MJJ. 
The line is < 7~ > - In( MJJ). 

This behavior is very reminicent of that of the total inelastic multiplicity in 

colliders as a function of the total center-of-mass energy. 

Shown in Fig.E.5 is CDF data from the Fermilab Collider on the rapidity 

distribution of fragmentation products with respect to the jet axis. What one 

finds is that there is an indication of a rapidity “plateau,” in other words a uniform 

distribution of rapidity with a tail extending out some units beyond that. 
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Figure E.5: CDF data on the rapidity distribution of the fragmentation products 
of jets. 

Our job now is to explain those facts about the mean multiplicity and the 

rapidity distribution. Let’s assume that the parton has a momentum p and it 

fragments into a hadron of momentum k. We define the momentum fraction to 

be z, so II ranges between 0 and one. These are the same kinematic definitions we 

have used throughout this note. We define a number density for fragmentation, 

D(z) which is the probability to find a hadron as a fragment with .z between z and 

z + dz. Note that, D(z) describes inherently soft processes, which means that we 

will be forced to measure D(z) rather than calculate it just as was the case for the 

“inverse” distribution B(r) - f(z). 

99 



t z k/p, O<z<l (E.3) 

D(z)& 

This definition tells us that the momentum spectrum of fragments is the con- 

volution over the fragmentation function D(z) of the momentum spectrum of all 

the parents. 

duldk N /$D(k/p)$ (E.4) 

N 
I 

$D(z)dz 

We take a fragmentation function which has a radiative like character similar to 

what we have assumed for gluons. Integrating the fragmentation function over all 

z we will get the mean multiplicity, since we have integrated over all the fragments 

in the jet. 

zD(z) = a(1 -t)” 

<n> = 1 D(z)dr N a J:;. dz/z 

- 4 W/m) 

(E.5) 

This integral is divergent just the way the total number of radiative partons 

was divergent at very small x. We cut off the integral by taking a lower limit 

which is defined by the mass of the particle. In that case we find that the mean 

multiplicity depends logarithmically on the jet momentum. In this way we can 

explain the logarithmic dependence that we saw in Fig. E.4. 

What about the rapidity distribution ? One particle phase space is just a four 

dimensional volume element with the constraint that the particle be on the mass 

shell. That turns out to be proportional to the rapidity interval, or dz/z. We 

have already used this result (without proof) in the discussion in Section D on jet 

scaling behavior. 

d4p6(p2 - ma) = dp’E = rdp;dy 

dm - - dy N dzjz 
E 

< n > - Ay - In(&/M) 

(E.6) 
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For light particles z, L, and rapidity are all equivalent variables. If particles 

are boiling out of the parton and fragmenting in a way controlled merely by phase 

space, we get a rapidity plateau. Of course, at a certain point one runs out of 

momentum, since one has to conserve total energy and momentum. In that case 

you fall off the plateau and are rapidly cut off by the kinematics, \yI 5 Ay. As a 

final note on kinematics, if you integrate over a uniform rapidity plateau you find 

the total rapidity interval which depends logarithmically on the center-of-mass 

energy as in Eq. C.8 which we already discussed. Since this is the inclusive cross- 

section, the integral is the mean multiplicity. The quantity < n > is easily seen to 

be logarithmically dependent on the center-of-mass energy. 

In Fig. E.6, we show ISR and CERN Collider data on the fragmentation func- 

tion for light fragments. It is clear that z D(z) fits reasonably well to an exponen- 

tial form, which of course means that most of the fragments are of low momentum 

with respect to the jet. It is also clear that D(z) is a scaling function, i.e., D(r) is 

roughly independent of ,/2. 
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Figure E.6: Collider data on D(z) for light fragments. 

In Fig. E.7, we show CERN Collider data from UA2 for both jets and for isolated 

single particles, which are assumed to be pions in this case. What one sees is the 

basic shape is not too different between the two types of data. The fragmentation 

has merely renormalized the pl scale by some multiplicative factor. 
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Figure E.7: UA2 data on jet and single particle pl distributions. 

Doing the convolution of a simple exponential fragmentation (Fig. E.6) and a 

l/p3 behavior for the parton momentum (which is what we expect for jet pro- 

duction as we saw in Section D), we get basically the same power law for the 

fragments. This is a nice simple way to see that the jet and single particle distri- 

butions typically look the same with regard to shape, but the single particles are 

softer because of fragmentation. 

zD(z) s e-P= 
du 
zy J $‘W++l~ 

- l= $ [$] e-Pk’pdp/p 

1 - dp 
-%k 7 JO ,-Pklp 

1 

“@ 

(E.7) 
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In this regard it is interesting to compare CERN Collider data on prompt 

photons and the single particles from jets as shown in Fig. E.8. We’ll recall from 

our discussion of prompt photons that the rate of photons with respect to jets is 

down by both coupling constant and source function factors. The rate is down by 

a factor of a with respect to the jet cross-section. On the other hand, the jet to 

x0 ratio is also down a couple of orders-of-magnitude due to the steepness of the 

fragmentation function as we saw already in Fig. E.7, although we expect similar 

shapes for jets (i.e., y) and fragments. 

As we see. in Fig. E.8, at higher transverse momentum we expect that the photon 

(which is a point particle and itself a “jet”) will cross the cross-section for x’s which 

are hadronic fragments of jets. This means that the (r/x”) ratio as a function of 

transverse momentum will exceed one at high enough transverse momenta. 

I 
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Figure E.8: UA2 data on pl distributions of x0 and 7. 
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In Fig. E.9, we show Collider data on single particle inclusive production at low 

pI over a wide range of center-of-mass energies. This data is fit to a power law in 

transverse momentum. However, that power law is much steeper than the l/p: 

behavior that one expects for the inclusive jet distribution due to fragmentation 

effects. 

0 CDF 1800 GeV ! 

LI UAl 546 GeV 1 

b A CP 27 GeV 4 

53 GeV 1 

P, CGeV/c) 

Figure E.9: Collider data on single particle inclusive production at low pL. 

Clearly, one can see that at a fixed transverse momentum the scaling behavior 

of jets feeds down into the behavior of single particles. At a fixed transverse 

momentum the cross-section rises rapidly as a function of energy. Looking at 

Fig. E.9, we can see that the cross-section is of the order millibarns at a transverse 

momentum of 2 GeV. This data was plotted along with the data from inclusive jet 

production in Section D. We saw that it fell much below the inclusive jet cross- 

section at moderate transverse momenta, which are 5 to 10 GeV and above. This 
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behavior is additional evidence ior the soft fragmentation of light particles from 

jets. 

- Al(Pl + PO)” 

A - 450 mb/GeV’ 

PO - 1.3 GeV 63.8) 

R - 8.2 
2~1.4 

(PI + PO)” 
- 0.3 mb/GeV 

PI= 2 Ge” 

What about the fragmentation functions for heavy particles? They can be 

summed up in a kinematic statement that heavy particles in a decay carry off 

most of the momentum. This is familiar if one looks at say, A particle weak decay. 

The proton takes off essentially all of the momentum and the pion is soft. In 

Fig. E.lO, we. show a quark level schematic diagram for a heavy quark fragmenting 

into a meson consisting of a heavy quark and a light anti-quark which it picks up 

out of the sea. 

p Q’ I------ rP(Qq) 
q 

(I -ZIP 

Figure E.lO: Quark level diagram for heavy quark fragmentation into a Qg 
meson. 

Just as we did in the case of looking at bremsstrahlung amplitudes in Eq. B.lO, 

we look at the perturbation theory amplitude. The amplitude with the smallest 

virtuality is the largest, so that the amplitude is proportional to the inverse of the 

energy difference between the initial and final state. Assuming that the hadron or 
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meson has roughly the same mass as the heavy quark, we get a simple expression 

for the amplitude. 

A - 1jAE 

AE = Ep-EQq-EE, (E.9) 

= P + M;/~P - ZP - (1 - z)p - M&/zrp - nf;/2(1 - z)~ 

2: [M2,/2 - M&/22 - M,1/2(1- z)] jp 

This basically kinematic statement, in fact, seems to be borne out by the data 

in Fig. E.ll which is e+e- Collider data on the fragmentation of c and b quarks. 

In fact, in both cases these are fairly hard fragmentations which get harder as the 

mass increases from c to b. The average value of z for charm fragmentation is 0.6 

whereas for b fragmentation it is 0.85. 

0 0.4 0.8 
z = P (DVp(c) 

0 0.4 0.8 
z =E(B)/ E(b) 

Figure E.ll: e+e- Collider data on c -t D and b -+ B fragmentation. 

This behavior is in distinction to the soft exponential fragmentation of light 

pion fragments which presumably come from fragmentation of effectively massless 

up and down quarks or gluons. The data confirms a rough estimate given in 

Eq. E.lO, which is called the Peterson form for the fragmentation functions. 
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+ b/(1 - z)l’ I&f,,, 

In the limit that the heavy quark mass is much much greater than the light 

quark mass, we have a distribution function zD(z), which goes like l/(1 - z)‘. 

That means that the heavy quark takes off all of the momentum in fragmenting 

into a meson because it comes out at z = 1. 

We are now ready to put together some of these fragmentation and decay ideas 

and look at the inclusive distribution of muons at the CERN Collider. The inclusive 

transverse momentum distribution of muons in a Monte Carlo model is shown in 

Fig. E.12. First we see the jet cross-section which is the largest cross-section of any 

of the ones we discussed at a given transverse momentum. We also show the Monte 

Carlo calculations for heavy flavor production and show the B cross-section. If you 

recall, the fragmentation function is quite hard, so that the relationship between 

the quark and the B meson distributions as a function of transverse momentum is 

reasonably closely coupled. 
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Figure E.12: Inclusive pl distributions of muons. Jets and b are also shown, along 
with b -+ B fragmentation. B + /J decays are indicated. The yield from c quarks is 
also shown. 

Note that the 2 -+ 3 process of gluon-gluon scattering followed by quark anti- 

quark pair creation may be thought of as a gluon jet decay into quark pairs. 

In discussing heavy flavors, we noted that 2 -+ 3 processes were comparable to 

2 + 2 processes. Thus, it is perhaps not surprising that the relationship of du/dpl 

for jets to that for B mesons is characterized by the kinematics for 7~ = 2 (i.e., 

pl + pL/2) and a flavor independent branching fraction for gluon jets, [B(J --t 

b) - b/(u+d+s+c+b) - l/S]. These relationships are also indicated in Fig.E.12. 

The B mesons decay semileptonically into muons. There are again two effects. 

First, there is a quark counting result that the semileptonic branching ratio into 
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muons is one ninth. Then the decay kinematics are such that the transverse mo- 

mentum is resealed down by a factor of three. These two effects leads us to the 

muon distribution which is also shown in Fig. E.12. For comparison, we also show 

Monte Carlo results for muons from charm decays. If you recall from Section D on 

heavy flavor production, the ratio of b + c should go like the square of the quark 

masses. That would mean that there are about ten times more charm particles 

than b particles at asymptotic energies. However, we see that at 5 GeV transverse 

momentum and above, the muons from B decay dominate over those from D de- 

cay. The reason is that the softer fragmentation function from the D decays wipes 

out, at fixed pl, the advantage one has in the production cross-section. That is 

interesting, because if one sits at a transverse momentum of a few GeV and triggers 

on muons, one is preferentially triggering on B decays and not D decays. 

The UAl data for the inclusive single muon transverse momentum distribu- 

tion is shown in Fig.E.13. Above a transverse momentum of about 30 GeV one 

is dominated by the leptonic decays of the gauge bosons, basically because the 

Jacobean peak puts most of the cross-section at a tranverse momentum equal to 

half the mass of the gauge bosons. At lower transverse momenta (say 30 GeV and 

below) the muon rate is dominated by the semileptonic decays of B and D par- 

ticles. There are other topological properties of the two types of processes which 

allow a clean separation between gauge bosom and heavy flavors. 

110 



I - 
T 
> 
!2! 
2 
Z 

10" - 

s.c 
8 
\ 
s :o" - 

10.’ - 

UAl 
I 

: 
xi -li - x, t? = 630 GE’V 

t I qh I < I.5 -! 

\ 

. Oats I 
---- bh‘. ct. W, 2. OY. J/$, Y 
--- w-u v. 2 e&q 

‘r 
Y 

// 
: i 
I 

:++&* . ‘i. t +* -1 -t- .Z 
I I 

l& 
0 

! I 
20 .LO 60 60 loo 

P: GrV/c) 

Figure E.13: UAl data on the pi distribution of muons. 

Let’s turn now from single muons to dimuons and look at the UAl data on 

high tranverse momentum production of 411 mesons &B seen in Fig. E.14. Recall in 

Section C that the gluon fusion prediction for the total inclusive cross-section for 

#,‘a was 10,000 nanobarns or 10 microbarns. This fusion process, however, leads 

to 4’s with very low transverse momentum, - A. By comparison the gluon-gluon 

fusion into a virtual gluon which then decays into a BB pair has a cross-section 

which is comparable and of order 10 microbarns. In this case, the natural scale of 

the E’s transverse momentum comes from the 2 + 2 processes. That scale has a 

transverse moments of order the mass of the B’s or 5 GeV. The indusive branching 
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fraction for B + $+ anything is about l%, which means that the cross-section 

times branching ratio for glum fusion production of BB pairs followed by inclusive 

decay into $s is about 100 nanobarns. At moderate transverse momentum, say of 

order the B xnass, all 4s (to first order) come from inclusive B decays. 

l l+J/JI* x 

ClCO calculation normalized 
to UAl single muon data 

0 2 L 6 8 10 12 1L 16 

J/y TRANSVERSE FIOMENTUM IGcV/O 

Figure E.14: UAl data on high pi production of $ + ~+PL- mesons. 

The data in Fig.E.14 confirm this expectation in the sense that the scale is 

about 100 nanobarns and the characteristic fall-off with transverse momenta is 

characterized by a slope which is of the same order as the B mass. This fact is 

again experimentally interesting because a possible tag for B’s is the appearance 

of the $I at moderate transverse momentum, of order 5 GeV. 

Another use for dimuons is to confirm the need for 2 + 3 processes in heavy 

flavor production. You recall in Section D that we said we needed 2 + 3 processes 

to explain the magnitudes of the cross-sections. A nice confirmation of that need 

is to look at the azimuthal correlations in dimuon production. The 2 --t 2 gluon 
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fusion diagrams for heavy flavor production are shown in Fig. E.15 along with the 

2 -+ 3 processes of glum-glum scattering with subsequent virtual decay of a glum 

into a heavy quark anti-quark pair. It should be fairly obvious that in the 2 + 2 

process the muons will come out on opposite sides of the azimuthal plane, whereas 

in the case of 2 -+ 3 processes they will come out on the same side. 

25 
Q 

\ ‘ih, 
b) ‘l---N 4 0 

/’ la p \ ? 
19 

Figure E.15: Gluon diagrams for heavy flavor production. For a) (a,, - K while 
for b) &,, - 0. 

Data on the azimuthal correlation is shown in Fig. E.16. Clearly both these 

processes occur in the sense that we have a peak for both toward and away cor- 

relations of the dimuons. That means that both these processes are comparable. 

As we said in Section D, we expect that the extra factor of ~2, that one needs 

in a 2 + 3 strong process is cancelled by the fact that gluon gluon scattering is 

considerably larger than the gluon-gluon fusion into heavy quark pairs. 
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Figure E.16: Collider data on the relative azimuthal angle of p+ to p- in JJ di- 
muon production. 

This data is a nice confirmation of the assertion, made in Section D, that we 

need 2 -t 3 processes to explain the magnitude of the cross-section. By that we 

mean we needed the other process so that the quark mass parameter that one uses 

in the theory agrees with its spectroscopic value. 

Most spectacularly perhaps, the sign selection of dimuons has proven in the 

CERN Collider experiments to require that the BB system mixes in a way very 

similar to that of the KK system. Heavy flavors are made in pairs of strong 

interaction eigenstates, say, BB. Then the decay b -+ cW- implies that BE goes 

to DDW+W-. The virtual W’s leptonically decay into p+,u-. This decay scheme 

means that the “leading” dimuons are always unlike sign. However, what was seen 

in the CERN Collider experiments was a large number of like-sign dimuons which 

could not be explained by the subsequent “non leading” decays of the D and &. 

These decays could be removed on kinematic grounds because the muons from 

the D decay have lower transverse momenta as we have already discussed. Since 
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they couldn’t be explained in that way, they were taken as evidence for the weak 

mixing of BB before the decay. Thus the sign selected dimuon sample has been 

extraordinarily useful in contributing to our knowledge of B quark spectroscopy. 

Remember that mixing of B’s has implications for top quark masses and/or Vh 

(three generation unitarity). 

Finally, just a word about future and/or present uses for muons. If the elusive 

top quark is heavier than the Lv then the diagram for 2 -+ 2 production and 

subsequent decay, of top anti-top is shown, in Fig.E.17. The topology of those 

events will be two real Ws plus two jets. The Ws decay leptonically and the two b 

jets may or may not decay in some topologically interesting way into $‘s or leptons. 

There will be some missing energy indicating the existence of neutrinos. We can 

estimate the cross-sections for top from simple extrapolation of what we did in 

Section D. For example, a 200 GeV top has a production cross-section something 

like 2 picobarns. 

\ 
1. 

W+W+J+J 
\ \ w+ ,’ w+ ,’ 

1 

Figure E.17: Diagram for 2 -+ 2 production and decay of tf for heavy top. 

What about backgrounds? For example, at a BE mass of 100 GeV we still 

have a differential cross-section of 20 picobarns per GeV which is not substantially 

different from the tt cross-section. These BB pairs in their semileptonic decay 
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would lead to rather high mass dimuons, say of order, 30 GeV from 100 GeV. So 

in fact, thinking about these numbers leads us to believe that the top search is not 

such a simple thing. One has to have a reliable estimate of the QCD backgrounds 

from Ws and from other heavy flavors. Finding the top is not going to be a trivial 

task for proton anti-proton colliders. 

dcr( b&) 
dM 

- 20 pb/GeV 
*=100 

M,, - 2kl - 30 GeV 

- Mb,-/3 

Some crude expectations are shown in Table E.l. 

Table E.1. 

Cross-Sections for Top Quarks 

and Related Particles. 

Mt (G=V) ) o&b) 1 aww(pb) 1 o&b) I 

;zj ) ;; 1 5 ) lo7 

(E.11) 

By comparison, the Drell-Yan expectation for WW pairs is about 5 picobarns, 

whereas the cross-section for BB pairs (being much lighter) is a million times 

larger or ten microbarns. In fact, the QCD gluon fusion process tails can give B’S 

at large mass (large transverse momentum). 

This brings us to the end of Section E. In summary, what we did is look at 

decays and fragmentation starting with fragmentation of jets into light particles. 

We defined the fragmentation function and showed how a simple fragmentation 

parameterization led to a rapidity plateau and a logarithmic dependence of the jet 

multiplicity on the mass of the jet. We also showed how a simple fragmentation 
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can lead to the same sort of power law behavior of parent to child; for example, 

jet to ?y”. We also looked at the data on inclusive single particle production at 

lower transverse momentum. Then we turned to heavy particle fragmentation and 

made a very simple argument leading to the Peterson form of the fragmentation 

function. This form was confirmed by the data on the fragmentation of both c 

and b quarks. Finally we combined a lot of these ideas together to look at muons 

from both the Jacobean peaks of gauge bosom and from the semileptonic decays of 

heavy flavors. We showed that, due to the softness of the fragmentation function, 

both single leptons and dimuons from $ decay at moderate transverse momentum 

are dominated by B’s and not D’s as one would expect from just thinking about 

the production cross-section. Finally, we talked about the use of dileptons for 

confirming the existence of 2 -+ 3 processes and as a signal for mixing. 

F. SUMMARY 

In Section A, the Standard Model was specified. Certain remaining questions 

were raised such as the Higgs mass, the top quark mass, and the total number of 

generations. The whole question of quark and lepton (including neutrino) masses 

is basically ad hoc. 

In Section B, we saw that the pointlike behavior of quarks was valid. However, 

the distribution functions f(z) are measured, not calculated from first principles. 

In particular, the gluons g(z) are known very indirectly. This fact has implications 

for low + physics, the “gluon bomb,” and the failure of the impulse approximation. 

In Section C, we looked at the cross-sections for 4, 4, $‘, and T produc- 

tion versus s. They seem consistent, but ncr Q, and 0 rates are lacking. The 

cross-sections for W and 2 production are calculable which provides a consistency 

check on sin& as measured in neutral-current interactions. Still, precise data on 

rw/l?z and Mt are lacking, which makes a definitive statement on the number of 

generations impossible. The Higgs has not been seen yet, and Tevatron Upgrade 

and SSC implications were discussed. 

While waiting for the Higgs, we looked at Drell-Yan in Section D. This mech- 

anism, or one very similar, will give us W-y and WW pairs at the Tevatron. That 
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event type will give us our first tests of triple boson gauge couplings. Jet produc- 

tion gave us a limit on compositeness and a view of 2 + 3 processes. The rise in (~1, 

if it is due to minijets, needs to be corroborated by measuring the real part of the 

elastic amplitude at the Tevatron. Data will soon be forthcoming. Finally prompt 

photons and heavy flavors give us a window on the pointlike processes involved. 

The prompt photon/jet angular distribution confirms the fermion/boson propa- 

gators. The rate and topology of QQ production confirms the need for 2 -+ 3 

processes. Finally, if Mt > Mw, as one might suspect from B - I!? mixing, tf 

production will be seen at the Tevatron. 

Section E saw a discussion of fragmentation. Light and heavy quark fragmenta- 

tion functions are consistent from e + - e to pp colliders and exhibit scaling. Single 

leptons are used to extract W and 6b rates. Dileptons are used to get 2 and 

B + $X, 11, -+ !+Ce- rates. Pairs of dileptons also confirm the need for 2 -+ 3 

processes in BB mixing which feed back on questions of the size of Mr. 

Clearly, the next few years of Tevatron Collider data will serve to help in 

answering many of these questions. Presumably top will be found, and the number 

of generations will be pinned down. The path the Upgrade takes will provide 

further direction to Collider Physics. It should be an exciting time! 
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